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Abstract

We present a thorough analysis of the use of modern heterogeneous systems interconnected by various cache-
coherent links, including CXL, NVLink-C2C, and Infinity Fabric. We studied a wide range of server systems that
combined CPUs from different vendors and various types of coherent memory devices, including CXL memory
expander, CXL pool, CXL shared memory, GH200 GPU, and AMD MI300a HBM. For this study, we developed a
heterogeneous memory benchmark suite, HEIMDALL, to profile the performance of such heterogeneous systems
and present a detailed performance comparison across systems. By leveraging HEIMDALL, we unveiled the detailed
architecture design in these systems, drew observations on optimizing performance for workloads, and pointed out
directions for future development of cache coherent heterogeneous systems.

1 Introduction
The ever-growing performance demands from modern applications drive the development of heterogeneous systems.
However, heterogeneous systems’ communication bandwidth has become one of the key bottlenecks in system scalabil-
ity, where the hardware bandwidth does not scale as fast as modern workloads’ bandwidth requirements. To improve the
bandwidth, devices such as network cards and GPUs have developed dedicated communication links [1] to exchange
data more efficiently. However, such new communication links often define their own communication protocols, requir-
ing specialized operating system kernel drivers and system software libraries and imposing new programming models
on workload developers. Adding such new devices to an existing heterogeneous system is thus non-trivial, which
can hold back their adoption. This motivates the need for an industry-standard communication protocol to provide a
consistent interface to workloads while enabling device manufacturers to integrate new devices into the ecosystem
without changing the programming interface.

Cache coherent interconnect protocols are proposed to unify the communication interface between heterogeneous
devices. With cache-coherent interconnects, processors can access device memory through the cache-coherent bus and
cache such data locally; At the same time, the protocol transparently updates the locally cached data when modified
by any connected device.Such protocols allow processors to exchange data in a standard scheme, simplifying data
synchronization and reducing the use of dedicated communication drivers and libraries for data synchronization. Many
existing cache-coherent protocols are initially deployed for homogeneous systems such as inter-CPU links [2, 3]. With
the rapid emergence of new accelerators and memory devices, industry and academia have been exploring generic
cache-coherent links [4–7] for heterogeneous systems to interconnect different types of processors and memory. Such
generic protocols aim to unify communication schemes and optimize data exchange performance between devices.

Compute Express Link [4] (CXL) is a recent open standard of cache coherent interconnect protocol and has been
commercially supported in its early stage. CXL defined a multi-device coherence protocol on top of the PCIe physical
layer, allowing processors to reuse the existing PCIe standard (links, form factors, and more) as much as possible instead
of adopting a new physical layer design. When interconnected with CXL, accelerators and memory devices can sit on
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Figure 1: CXL system organization overview, the top sub-figures are photos of the real machine we’ve built locally,
and the bottom sub-figures are illustrations of the system build. This figure shows only part of the system in our fleet,
and see Table 1 for a full list of systems used in this paper.

the PCIe bus and exchange data coherently with other devices, including the host CPU. As of today, CXL has three
generations of standard specs, from 1.0 to 3.0. The CXL 1.0 spec lays the foundation of the CXL standard, defining
the basics of coherence and device data exchange protocols; the revised 1.1 spec added the specification for memory
expander devices. The CXL 2.0 introduced switch-based topologies, enabling scalable multi-device configurations and
improved memory pooling. The recent CXL 3.0 doubled the bandwidth with PCIe Gen 6 and incorporated advanced
features such as atomic operations and enhanced security, supporting more demanding applications like AI and large-
scale memory pools.

Vendor-specific coherent protocols have also been deployed in vendors’ integrated systems. NVLink-C2C [7] extends
Nvidia’s NVLink protocol to provide cache coherence. This protocol connects Nvidia CPUs and GPUs in Nvidia’s
proprietary system builds, such as GH200 and GB200, and it’s not seen in other systems such as x86 CPUs. IBM
Power architecture supports NVLink protocols [8], but not the C2C protocol. AMD’s Infinity Fabric [3] can coherently
interconnect AMD CPUs and AMD GPUs, which is commonly seen in AMD’s MI300A [9] and follow-up systems.

In this paper, we then studied the performance characteristics in such heterogeneous systems, compared performance
metrics side-by-side across different systems, and drew observations. To this end, we developed a benchmark suite,
HEIMDALL, and leveraged it to conduct a wide range of performance profiling. This benchmark suite consists of
carefully crafted microbenchmarks that trigger specific system behaviors across system layers, from microarchitecture
to operating systems levels. By analyzing the benchmark result on a single system, we observed characteristics such as
CPU and CXL device microarchitecture designs that support the CXL protocol, together with OS and system software
performance, while leveraging CXL devices. Then by comparing benchmark results across systems, we observed
discrepancies between systems, including different CPU-side CXL designs between AMD and Intel and device-side
architectural implications for performance.

In summary, we make the following contributions:

• We built a cluster of CXL-based systems and summarized our lessons learned throughout this process.
• We developed a benchmark suite–HEIMDALL–for heterogeneous memory systems.
• By leveraging this benchmark suite, we studied a wide range of cache-coherent heterogeneous system configura-

tions.
• We draw key observations from our extensive experiments and point out strategies in optimizing system software

for cache-coherent heterogeneous systems.
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Figure 2: Topology for AMD MI300A with Infinity Fabric, and GH200 with NVLink.

2 Background and Methodology

2.1 Compute Express Link (CXL)
Compute Express Link (CXL) [4] is an open industry-standard interconnection protocol designed to facilitate high-
speed communications between processors, accelerators (such as GPUs and SmartNICs), and memory devices in
computing systems. A unique feature of CXL is its capability at the hardware level to enable coherent memory access
across heterogeneous architectures. This coherence ensures that various processors and accelerators can transparently
share memory resources as though they were part of a unified system. By leveraging CXL, we can simplify the memory
access operations in heterogeneous programming models.

2.1.1 CXL Protocol and Device Types

CXL supports three different protocols: CXL.io, CXL.cache, and CXL.mem. CXL.io is identical to the PCIe protocol
and enables device discovery, enumeration, and PCIe IO transactions. On the other hand, CXL.cache and CXL.mem
enable coherent cache communication among devices. CXL.mem allows the host to coherently access device memory,
and CXL.cache additionally allows the device to coherently cache host memory on the device.

CXL defines three device types, Type 1 to 3, for different use cases: Type 1 devices are traditional PCIe devices and
support only the CXL.cache protocol. Type 2 devices are accelerators with onboard memory (e.g., GPUs) and support
all three CXL protocols. Finally, Type 3 devices have onboard memory for capacity and bandwidth expansion but do
not cache host memory; they support CXL.io and CXL.mem.

The CXL systems we tested (Figure 1 and Table 1) provide three types of interfaces to access the CXL on-device
resources: (1) All of our CXL devices expose PCIe config space and user-defined memory-mapped registers for
configuring CXL device behaviors. Type 1 and 2 devices expose an additional PCIe interface for programs to interact
with on-device accelerators. (2) Type 2 and 3 devices enumerate their on-device memory as an additional NUMA
memory node for programs to access such memory. This ensures any existing workload can easily use CXL memory
through the NUMA interface instead of specialized libraries. (3) Selectively, type 2 and 3 devices can be configured
to expose their memory as a Direct Access (DAX) file–a memory-mapped device file in Linux systems–allowing
workloads to use mmap() to access CXL memory. Once enabled, this DAX mode removes the corresponding amount
of memory from the NUMA memory node to prevent conflict access from both sides.

2.1.2 CXL Enumeration

To boot a system with CXL devices, CPU firmware and operating system kernel have to support CXL. CXL device
enumeration is the process where the BIOS/UEFI and OS discover and identify devices connected to the CXL bus.
This process is required to establish communication between the host CPU and CXL devices.

During the early bootup stage, the BIOS/UEFI automatically probes all devices connected to the PCIe (including
CXL devices) and establishes early communication with CXL devices. Different CPUs handle this process differently.
For example, our SPR-1 CPUs can fully enumerate the Intel-FPGA-based CXL devices without the help of the OS
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Table 1: System specifications. EMR=Emerald Rapids, SPR=Sapphire Rapids, GH=Grace Hopper

Machine CPU Model Coherent Fabric CPU Memory / Socket Coherent Device Device Size

EMR-1 2 x Intel Xeon Gold 6542Y CXL v1.1+ 8 x 32 GiB DDR5 Pool-FPGA-CXL (Pool) 512 GiB
EMR-2 2 x Intel Xeon Gold 6530 CXL v1.1+ 8 x 32 GiB DDR5 ASIC-CXL-3 (Expander) 256 GiB
EMR-3 2 x Intel Xeon Silver 4509Y CXL v1.1+ 4 x 32 GiB DDR5 SHM-FPGA-CXL (Shared Mem) 1024 GiB
SPR-1 2 x Intel Xeon Silver 4416+ CXL v1.1 4 x 32 GiB DDR5 FPGA-CXL (Expander) 64 GiB
SPR-1 2 x Intel Xeon Silver 4416+ CXL v1.1 4 x 32 GiB DDR5 ASIC-CXL-1 (Expander) 256 GiB
SPR-2 2 x Intel Xeon Gold 6442Y CXL v1.1 8 x 128 GiB DDR5 ASIC-CXL-2 (Expander) 256 GiB
SPR-3 2 x Intel Xeon Gold 5416S CXL v1.1 8 x 32 GiB DDR5 ASIC-CXL-1 (Expander) 256 GiB
Zen4-1 2 x AMD EPYC 9124 CXL v1.1+ 4 x 16 GiB DDR5 ASIC-CXL-1 (Expander) 256 GiB
Zen4-2 4 x AMD MI300A Infinity Fabric 8 x 16 GiB HBM3 HBM3 (NUMA node) 128 GiB
Zen4-3 1 x AMD EPYC 9534 CXL v1.1+ 2 x 32 GiB DDR5 Pool-FPGA-CXL (2x Interleaved) 512 GiB
Zen5-1 2 x AMD EPYC 9535 CXL v2.0 4 x 64 GiB DDR5 ASIC-CXL-3 (Expander) 256 GiB
GH200 1 x NVIDIA Grace NVLink C2C 8 x 60 GiB LPDDR5x HBM3 (GPU) 96 GiB

kernel, while our AMD CPUs cannot correctly enumerate the FPGA-based devices. CPU vendors can implement
dedicated CXL enumeration processes for their CXL products (which may have specialized designs such as accelerator
communication protocols and device IDs), leaving the OS kernel to enumerate generic CXL devices that comply with
CXL standards. We found our SPR-1 CPU using the specialized PCIe device ID (0x0ddb) provided by Intel CXL
FPGA to identify such devices and properly enumerate them, while our AMD CPUs do not recognize such ID.

After BIOS/UEFI finishes booting, the OS kernel (the Linux kernel in our paper) takes over and relies on its CXL
device driver to further set up CXL devices. This process includes discovering CXL devices from PCIe devices,
extracting CXL-related information from config registers (such as CXL-attached memory size and start address),
creating corresponding Linux device files, and adding a new NUMA node for CXL-attached memory, if any. The
Linux kernel support for CXL is still under development and refinement, and only until Linux 6.8-rc2 does it correctly
recognize Intel FPGA-based Type 3 devices [10], and more supports coming under the path.

2.2 Accessing CXL Resources
There are three types of CXL devices with different combinations of CXL resources. Type 1 devices are pure accelerator
devices without memory exposed to host CPUs. Type 3 devices are pure memory devices without exposing any
accelerator to host CPUs. Type 2 provides both accelerator and memory resources for the host.

To access CXL accelerator resources provided by Type 1 and Type 2, a program communicates with the CXL’s PCIe
device file provided by the Linux kernel and follows the accelerator’s communication protocol. To access CXL memory
resources provided by Type 2 and Type 3, a program can chose to access through NUMA interface or a direct-access
(DAX) device file. CXL memory is by default exposed as an additional NUMA memory node in the Linux system,
allowing any program to easily access it through NUMA libraries or the numactl command line tool. Selectively, users
or programs can configure the device to expose CXL memory through a DAX device file through the daxctl command
line tool. Once configured, the program can use the mmap() system call to map this DAX file into its address space and
then directly manage this memory space. Any access through such a DAX file will directly access the CXL memory
without any DRAM memory as an intermediate cache. Such a method gives the program more flexibility in managing
CXL memory space [11].

2.3 NVLink-C2C and Infinity Fabric
We studied the GH200 system with NVLink-C2C links, and the AMD MI300A system with Infinity Fabric links. As
shown in Figure 2, the GH200 system exposes the on-GPU HBM3 to the CPU as a NUMA memory node in addition
to its LPDDR5 memory node, so both memory nodes can be accessed using CPU load and store instructions. On the
other hand, the AMD MI300A has its HBM3 shared by each CPU and GPU pair, and it is the only NUMA memory
node for each socket.
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Figure 3: Topology for the CXL Pool (statically partitioned, unshared) and CXL Shared Memory, software managed,
all of the device is accessible by both hosts. (a) and (b) use DDR4 as the device memory and are FPGA-based.

2.4 System Description and Experimental Configurations
Table 1 lists the systems we studied in this work, including six machines we built locally (partially depicted in Figure 1),
and other machines are accessed remotely from various sources. These systems cover many of the recent generations
of CPUs from Intel, AMD, and Nvidia, as well as various types of CPU memories such as DDR5, LPDDR5x, and
HBM3. Note the CPUs with CXL v1.1 only supports CXL.io and CXL.cache, the v1.1+ and v2.0 additionally support
CXL.mem. On the device side, we integrated three types of ASIC-based memory expanders from various vendors
into Intel and AMD CPUs for evaluation. We also implemented all three types of CXL devices on Intel Agilex 7
FPGAs with 64 GiB DDR4 DRAM and evaluated them with Intel CPUs. Unless otherwise stated, we use FPGA Type
3 devices in our performance evaluations to compare with the ASIC-based memory expander. The CXL pool and CXL
shared memory systems are FPGA-based prototypes hosted by our research collaborations. Their topology is shown in
Section 2.4. And the Zen4-3-Pool-CXL system interleaves two CXL pool endpoints with hardware interleaving. The
GH200 and MI300A systems are commercially available products that we accessed remotely.

2.5 HEIMDALL Framework
HEIMDALL comes with a large set of benchmarks and profiling tools to profile the system performance. This section
provides an overview of these components, leaving more detailed descriptions for later sections.

Microbenchmarks. We develop a wide range of microbenchmarks to study the performance at the hardware and mi-
croarchitecture level. These microbenchmarks are implemented to trigger specific hardware behaviors; thus, we detect
microarchitecture designs by monitoring their performance results under different configurations. As an example, we
utilize our pointer-chasing microbenchmarks to study memory latency, and by varying pointer-chasing configurations,
we reverse-engineer the memory architecture such as memory controller design and CXL data path. To ensure HEIM -
DALL microbenchmarks behave as expected, we implement their core functionalities in raw x86 assembly code to rule
out potential compiler optimizations.

Application benchmarks. We integrate application-level benchmarks into HEIMDALL to study the system and
software performance. We configure these benchmarks to run on various hardware system settings, such as remote vs.
local memory access, various memory interleaving schemes, and different sub-NUMA clustering modes. By profiling
such benchmarks, we observe the system performance limitations and highlight future directions for performance
improvements.

Profiling framework. We develop HEIMDALL as a low-noise profiling framework that runs microbenchmark code
in Linux kernel space to access physical memory at low noise. We utilize system configuration tools to reduce noises,
including turning off CPU hardware prefetchers, disabling simultaneous multithreading (SMT), disabling interrupt
handlers while running microbenchmarks, and boosting CPUs to performance mode through the CPU scaling governor.
We adopt profiling tools—such as perf [12], AMD uProf [13], Intel PCM [14]—to collect hardware performance
counters.

Open source. We open source HEIMDALL at github.com/awesome-cxl/ to facilitate future research.
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Figure 4: Load and store latency, with clflush after each load and store instruction to enforce access to the off-core
memory. Hardware prefetchers are off. The x-axis represents the access pattern (sequential or random) and access type
(accessing memory from local NUMA CPU or remote CPU), and the y-axis indicates the average access latency per
cache line in nanoseconds. Each test accesses more than 32 GiB of memory and repeats 1000 times to obtain average
latency values.

3 Basic Performance
We leverage our HEIMDALL’s microbenchmark suite to study the basic performance characteristics of the CXL
memory devices and compare the results with CPU-attached DDR5 DIMMs. We start with the latency and bandwidth
measurements, followed by specific instructions’ behaviors, including cacheline flush, prefetch, and atomic instructions.
Our key observations in this measurement motivate our further investigation at the micro-architecture layer (Section 4)
and application layer (Section 6).

3.1 Load/Store Latency
We evaluate the load and store latencies of various CXL devices and compare them against traditional DRAM DIMM.
We configured HEIMDALL to accurately measure memory latency across NUMA nodes. As depicted in Figure 4,
“Local” refers to memory accesses within the same NUMA node as the profiling core, whereas “Remote” denotes
cross-socket accesses. DIMM latency was measured on socket 0 for both local (NUMA 0) and remote (NUMA 1)
memory nodes. Similarly, CXL memory (NUMA 2) was accessed locally from socket 0 and remotely from socket 1.
Additionally, we compared the latency under different access patterns, including sequential and random orders. During
all measurements, the CPU hardware prefetcher was disabled to ensure accurate characterization of pure off-core
memory latency.

Overall, remote memory access incurs higher latency compared to local access due to greater physical distances.
Latency for CXL memory significantly exceeds that of traditional DIMM DRAM, ranging from approximately 50%
to 300% higher. We observed considerable latency variation across different CXL memory devices. ASIC-based CXL
memory exhibits the lowest latency, typically within the range of 200-300 ns for local access. The latency across ASIC-
based vendors is similar, with ASIC-CXL-1 and ASIC-CXL-2 slightly higher than ASIC-CXL-3. FPGA CXL memory
shows higher latency, reaching around the 400 ns range for local access, likely due to the lower operational frequency
and suboptimal performance tuning of FPGA-based CXL controllers compared to ASIC-based solutions. The Pool-
CXL and SHM-CXL devices demonstrate the highest latency, exceeding 500 ns, with a relatively smaller latency gap
between local and remote access. This behavior arises because Pool-CXL and SHM-CXL are disaggregated memory
architectures not directly attached to the host CPU; thus, longer physical distances contribute the vast majority of the
increased latency. With the CPU hardware prefetcher disabled, CXL memory does not exhibit latency improvements
for sequential access; performance remains comparable to random access scenarios.

When comparing Intel and AMD systems that use the same CXL devices, Intel SPR platforms generally achieve slightly
lower latency than the AMD Zen4 architecture. This observation indicates that Intel implemented a more optimized
CXL memory controller in Intel SPR, their first-generation architecture that supports the CXL protocol. However,
on newer architectures, such as Intel EMR and AMD Zen5, the latency gap previously seen on ASIC-based CXL
devices has disappeared. This suggests that AMD has improved its CXL memory controller design, closing the latency
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performance gap with Intel in the recent generation.

Observation 1. The device controller implementations significantly impact CXL latency, and CPU hardware has
only a marginal impact. The ASIC-based CXL memory devices have similar latency, all lower than FPGA CXL
latency.

3.2 Bandwidth Scaling
We configured HEIMDALL to measure the bandwidth of different NUMA nodes with different numbers of CPU threads.
As shown in Figure 5, the bandwidth scaling depends on the heterogeneous memories and the CPU vendor. “Local”
refers to the performance when the memory device is connected to the same NUMA node as the CPU cores running
the profiling, while “Remote” refers to the performance when the memory is on a different socket. For the DIMM
configuration, we measured performance from socket 0 by accessing both the local NUMA node (NUMA 0) and the
remote NUMA node (NUMA 1). To evaluate the CXL memory node (NUMA 2) connected to the PCIe slot of socket
0, we used cores from socket 0 for local accesses and cores from socket 2 for remote accesses.

In the case of HBM memory, the Zen4-2-HBM3 accesses HBM3 memory for both local and remote accesses, albeit on
different sockets; thus, the local NUMA node (NUMA 0) and the remote NUMA node (NUMA 1) both correspond to
HBM3 nodes. For the GH200-HBM3, the system consists of a CPU node and a GPU node, where the CPU accesses
LPDDR5x and the GPU accesses HBM3e as their respective local memories. Consequently, the local NUMA node
(NUMA 0) is associated with LPDDR5x, while the remote NUMA node (NUMA 1) corresponds to HBM3e. More
details are presented in Figure 2.

3.2.1 Intel CPUs

In this section, we analyze both load and store bandwidth scaling results for DIMM and CXL memory across two
generations of Intel CPUs and four types of CXL memory devices. Figure 5a through Figure 5o present the observed
bandwidth behavior under varying thread counts. From this analysis, we identify four key observations.

First, in all systems, DIMM-based memory shows consistent and effective bandwidth scaling for both load and store
operations as the number of threads increases. However, bandwidth scaling is more prominent in load operations than in
store operations. For example, on the SPR-1-ASIC-CXL-1 with 4 DIMM channels, saturation is observed at 109 GiB/s
(load) and 95 GiB/s (store) locally, and 61 GiB/s (load) and 60 GiB/s (store) remotely. On the SPR-2-ASIC-CXL-2,
which features 8 DIMM channels, saturation reaches 208 GiB/s (load) and 175 GiB/s (store) locally, and 88 GiB/s
(load) and 86 GiB/s (store) remotely. Although doubling the number of DIMM channels increases bandwidth, the
gain is sublinear for both load and store paths–likely due to memory controller saturation. Notably, the increase is less
pronounced for store operations (80 GiB/s local, 26 GiB/s remote) than for load operations (99 GiB/s local, 27 GiB/s
remote), indicating that store paths are less scalable.

Second, even with identical memory configurations—specifically, 8 DIMM channels per socket and DDR5 at 4800
MT/s—bandwidth scaling varies depending on the CPU model. In Figures 5c and 5m and Figures 5e and 5o, the EMR-
3-SHM-CXL outperforms the SPR-2-ASIC-CXL-2. For load operations, it reaches 248 GiB/s (local) and 113 GiB/s
(remote), compared to 208 GiB/s and 88 GiB/s on the SPR-2-ASIC-CXL-2. For store operations, it achieves 191 GiB/s
(local) and 103 GiB/s (remote), versus 175 GiB/s and 86 GiB/s, respectively. These results suggest that the EMR-3
CPU provides enhanced memory path efficiency. Additionally, UltraPath Interconnect (UPI) bandwidth on the EMR-3
system is improved by approximately 25% [15] compared to SPR-2, further contributing to its performance advantage
on the remote path.

Third, bandwidth scalability varies significantly across different CXL memory devices. The FPGA-CXL exhibits poor
scaling for both load and store operations. Load bandwidth saturates at 19 GiB/s (local) and 8 GiB/s (remote), while
store bandwidth peaks at a single thread and degrades with more threads. This behavior is attributed to its limited
configuration—only two SODIMMs. In contrast, ASIC-based CXL memory devices demonstrate more stable and
higher bandwidth for both access types, maintaining saturation as thread count increases. For example, the ASIC-
CXL-1 and ASIC-CXL-2, both connected to the same generation CPU, achieve similar local bandwidths, but ASIC-
CXL-2 delivers approximately 6 GiB/s higher remote bandwidth in load operations, implying improved remote access
efficiency.
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Figure 5: Bandwidth scaling when using different number of threads. The x-axis is the number of threads accessing
memory, and the y-axis is the peak bandwidth achieved. We measure memory bandwidth accessing from both local
and remote CPUs.
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Finally, we compare systems with different CXL memory connection topologies. The EMR-2-ASIC-CXL-3, which
connects CXL memory directly via the root complex, achieves 25 GiB/s (load) and 21 GiB/s (store) locally, and
13 GiB/s (load, store) remotely. Meanwhile, the EMR-3-SHM-CXL, which accesses memory through an external CXL
memory pool, delivers 35 GiB/s (load), 36 GiB/s (store) locally, and 15 GiB/s(load), 23 GiB/s (store) remotely. These
results exceed the theoretical maximum of a single x8 lane CXL expander (29.34 GiB/s), indicating that interleaving
or efficient workload distribution within a memory pool can significantly improve total CXL memory bandwidth.

3.2.2 AMD and ARM CPUs

In this section, we explore both load and store bandwidth scaling results for DIMM, CXL, and HBM memory across
two generations of AMD CPUs and one ARM CPU. Figure 5f through Figure 5t show the observed bandwidth behavior
under varying thread counts. From this analysis, we identify three key observations.

First, DIMM memory systems demonstrate effective and consistent bandwidth scaling for both load and store operations
across all AMD systems. In Figure 5f, 5g, and 5h, we observe the scaling characteristics of AMD CPUs using DDR5
DIMMs. The differences in saturated bandwidth among these systems can be primarily attributed to variations in
the number of DIMM channels. The store bandwidth scaling performance is illustrated in Figure 5p, 5q, and 5r.
Interestingly, in AMD systems, store bandwidth increases in a stepwise pattern. This behavior reflects the architectural
layout of AMD’s Core Complex (CCX), in which multiple cores within a CCX share the last-level cache, creating
bandwidth jumps as thread count increases across CCXs.

Figure 5j and 5t illustrate the bandwidth scaling behavior of the GH200, which utilizes LPDDR5x memory. For load
operations, it saturates at 304 GiB/s with 50 threads, showing efficient bandwidth scaling. However, for store operations,
the system exhibits instability. After reaching a peak bandwidth of 283 GiB/s at 22 threads, the store bandwidth declines
as thread count increases, indicating inefficiencies in the store path under high concurrency.

Second, CXL memory systems exhibit distinct bandwidth scaling behavior between ASIC-based CXL devices and the
Pool-CXL. For load operations, ASIC-CXL-1 shows both local and remote CXL bandwidth saturating at approximately
26 GiB/s, with nine threads being the saturation point, as shown in Figure 5f. In contrast, Figure 5h shows that although
the slope of the bandwidth increase is lower for the Pool-CXL compared to the ASIC-CXL-1 and ASIC-CXL-3, it
eventually reaches a significantly higher saturation bandwidth of 49 GiB/s at 51 threads. This value is nearly twice that
of the ASIC-based CXL devices, highlighting the potential of bandwidth expansion with the Pool-CXL.

For store operations, ASIC-based CXL devices demonstrate poor scaling, as shown in Figure 5p and 5q. Store bandwidth
remains flat across all thread counts, showing no improvement. In contrast, Figure 5r shows that the Pool-CXL exhibits
effective store bandwidth scaling: performance increases steadily with thread count and saturates at 69 GiB/s with 20
threads. This is 2.8× higher than the store bandwidth observed with ASIC-based CXL devices, further demonstrating
the scalability advantage of the Pool-CXL.

Finally, we explore the bandwidth scaling characteristics of HBM3 and HBM3e memory on the Zen4-2-HBM3 and
GH200-HBM3. The Zen4-2-HBM3 utilizes HBM3 exclusively on both the Complex Core Dies (CCDs) and the
Accelerator Core Dies (XCDs), which share memory via the Infinity Fabric interconnect to reduce redundant memory
copies. We profile bandwidth scaling from the CPU side, and the results are shown in Figure 5i and Figure 5s.

For local load operations, bandwidth scaling shows efficient performance as the number of threads increases. However,
the CCDs on the Zen4-2 can utilize only a fraction of the chip’s total HBM3 bandwidth. As a result, the local load
bandwidth saturates at 175 GiB/s with 24 threads; for reference, the full 5.3 TB/s of HBM3 bandwidth is primarily
intended to serve the XCDs rather than the CPU cores. For remote load operations, although the Infinity Fabric
supports a theoretical bandwidth of 112 GiB/s for cross-socket links, the observed remote load bandwidth saturates at
only 25 GiB/s. The root cause of this limitation has not yet been identified.

In the store results shown in Figure 5s, the Zen4-2 exhibits stepwise bandwidth scaling similar to that of the Zen4-1
system. This behavior reflects the hierarchical structure of the CCDs: the Zen4-2 includes three CCDs, each with eight
cores. Bandwidth increases occur in steps that correspond to both the number of cores per CCD and the total number of
CCDs. The local store bandwidth saturates at 189 GiB/s with 17 cores, while remote store bandwidth reaches saturation
at 44 GiB/s with 9 cores. As with remote load operations, remote store performance does not fully utilize the 112 GiB/s
bandwidth supported by the Infinity Fabric interconnect.
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The GH200-HBM3 utilizes HBM3e located on the GPU side, which appears as a remote NUMA node from the
CPU’s perspective. We evaluate the bandwidth scaling performance of HBM3e through the NVLink-C2C interconnect.
Figure 5j and 5t present the results for remote HBM3e accesses, showing efficient bandwidth scaling. The bandwidth
saturates at 125 GiB/s for load and 149 GiB/s for store operations. Although NVLink-C2C theoretically supports
up to 450 GB/s of bidirectional bandwidth [16], the achieved performance falls significantly short of this peak. The
underlying cause of this discrepancy remains unclear, and further analysis is required to identify the bottleneck.

Observation 2. ASIC-CXL-1 shows more stable bandwidth scaling compared to FPGA-CXL. In addition, CXL
memory on Zen4-1 shows better bandwidth performance than CXL memory on SPR-1, with similar saturation
levels for local and remote access, while SPR-1’s CXL memory saturates at different bandwidth between local
and remote access.

3.3 Bandwidth vs. Latency
We utilize HEIMDALL to profile latency behavior as bandwidth increases across heterogeneous memory systems,
including DDR5 DIMM, LPDDR5x, HBM3, HBM3e, FPGA-based CXL, ASIC-based CXL, and pooled CXL memory.
This profiling allows us to characterize the latency patterns of each memory type in relation to bandwidth, and to
identify the optimal bandwidth levels at which CXL memory can be used to extend system capacity without degrading
overall performance. Figure 6 presents the bandwidth versus latency measurements for CXL and DIMM devices across
ten types of CPU servers, comparing both local and remote memory access. The x-axis represents bandwidth, while
the y-axis shows corresponding latency.

Intel CPUs

In this section, we explore the bandwidth versus latency behavior of Intel CPUs. We evaluate two generations of Intel
processors using five types of CXL memory devices and DDR5 DIMM to observe how latency changes as bandwidth
increases. Figure 6a through Figure 6e show the results for load operations, while Figure 6k to Figure 6o present the
store results. As system-level bandwidth saturation was discussed in the previous section, our focus here is on the
latency trends as a function of bandwidth. From our profiling, we derive two main observations.

First, DDR5 DIMM bandwidth versus latency exhibits similar patterns across all tested CPUs. The SPR-1 system,
equipped with four DIMM channels, saturates at 107 GiB/s and begins to show increased latency beyond this point.
In contrast, SPR-2, EMR-3, and EMR-2 systems are configured with eight DIMM channels, so they achieve higher
bandwidth and show similar latency performance.

For systems with four DIMM channels, the maximum observed latency was 366 ns (local) and 654 ns (remote) for load
operations, and 752 ns (local) and 635 ns (remote) for store operations. For systems with eight DIMM channels, the
load bandwidth versus latency performance shows minimal variation across CPU generations, with maximum latency
ranging from 254-259 ns (local) and 561-618 ns (remote). However, in store operations, the EMR-2 system exhibits
a noticeable drop in bandwidth after reaching peak performance as latency increases. This effect is more pronounced
compared to SPR-2 systems and can be clearly observed in Figure 6n.

Second, CXL memory expanders show diverse bandwidth versus latency characteristics depending on the device type.
The FPGA-CXL device consistently exhibits higher minimum latency than ASIC-based CXL devices–1.52× (local)
and 1.36× (remote) higher for load, and 1.54× (local) and 1.38× (remote) higher for store. In contrast, the ASIC-
CXL-3 shows the lowest latency for both load and store among all CXL devices, with latency 1.1× (local) and 1.3×
(remote) lower than that of the SPR-1 system for load, and 1.1× lower (local) for store. However, in terms of maximum
latency, ASIC-CXL-3 shows relatively high values compared to other ASIC-based CXL devices. This is likely due to
the higher core count on the EMR-2-ASIC-CXL-3, which causes greater contention. Therefore, we cannot attribute
high maximum latency solely to the device’s characteristics under contention.

An interesting observation is seen in the SHM-CXL system, which exhibits the highest latency across all CXL configu-
rations, as shown in Figure 6e and 6o. Unlike other ASIC-based CXL devices that are directly attached within the server,
SHM-CXL connects to an external CXL memory pool via a network card, contributing to its higher latency. Despite this
increased latency, it achieves comparable maximum bandwidth and exhibits similar latency under contention. These
results suggest that pooled CXL memory could be a promising solution for applications where large memory capacity
and bandwidth are prioritized over minimal latency.
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(a) SPR-1-FPGA-CXL: Load
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(c) SPR-2-ASIC-CXL-2: Load
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(d) EMR-2-ASIC-CXL-3: Load
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(e) EMR-3-SHM-CXL: Load

0
250
500
750

1000
1250
1500
1750
2000
2250
2500

0 25 50 75 100 125 150 175 200 225 250 275 300
Bandwidth (GiB/s)

La
te

nc
y

(n
s)

Local-DIMM
Remote-DIMM
Local-ASIC-CXL-1
Remote-ASIC-CXL-1

(f) Zen4-1-ASIC-CXL-1: Load
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(g) Zen5-1-ASIC-CXL-3: Load
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(h) Zen4-3-Pool-CXL: Load
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(i) Zen4-2-HBM3: Load
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(j) GH200-HBM3: Load
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(k) SPR-1-FPGA-CXL: Store
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(l) SPR-1-ASIC-CXL-1: Store
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(m) SPR-2-ASIC-CXL-2: Store
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(n) EMR-2-ASIC-CXL-3: Store
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(o) EMR-3-SHM-CXL: Store
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(p) Zen4-1-ASIC-CXL-1: Store

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 25 50 75 100 125 150 175 200 225 250 275 300
Bandwidth (GiB/s)

La
te

nc
y

(n
s)

Local-DIMM
Local-ASIC-CXL-3

(q) Zen5-1-ASIC-CXL-3: Store
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(r) Zen4-3-Pool-CXL: Store
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(s) Zen4-2-HBM3: Store
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(t) GH200-HBM3: Store

Figure 6: Bandwidth vs. latency measurements on each machine, where we measure from both local and remote CPUs,
accessing either DRAM DIMM or the CXL memory.
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AMD and ARM CPUs

In this section, we analyze the bandwidth versus latency behavior of AMD and ARM CPUs1 using various memory
types, including DDR5 DIMM, LPDDR5x, HBM3, HBM3e, and three types of CXL devices. We evaluate how latency
changes with increasing bandwidth for each memory configuration.

First, DIMM memory shows varying bandwidth-latency characteristics depending on the CPU architecture. On AMD
Zen4 CPUs, such as Zen4-1, the bandwidth versus latency trend remains stable for both load and store operations.
As shown in Figure 6f and 6p, latency remains nearly constant as bandwidth increases. In contrast, SPR-1 exhibits a
steeper latency increase in both load and store operations near peak bandwidth, as seen in Figure 6b and 6l, indicating
sensitivity to bandwidth saturation.

The Zen4-2 system follows a similar trend to Zen4-1, maintaining stable latency characteristics under increasing band-
width, as shown in Figure 6i and 6s. However, despite also using a Zen4 CPU, Zen4-3-Pool-CXL shows significantly
different behavior. As illustrated in Figure 6h and 6r, both load and store latency increase sharply. We attribute this to
the system using only two DIMM channels, which creates a bandwidth-constrained environment and leads to elevated
latency as demand exceeds available memory throughput. The Zen5-1 processor, a newer generation AMD CPU, shows
a different pattern from Zen4. As it is configured as a single-socket system, remote memory performance cannot be
evaluated. In Figure 6g, the load latency remains stable as bandwidth increases, consistent with previous Zen4 results.
However, the store performance differs: as bandwidth increases, latency rises noticeably, and the slope becomes steeper,
as shown in Figure 6q. The GH200, based on ARM architecture and equipped with LPDDR5x memory, shows smooth
and gradual latency scaling. As depicted in Figure 6j and 6t, the load latency increases gently, reaching 500 ns at
300 GiB/s. For store operations, latency remains relatively flat and only increases slightly at peak bandwidth.

Second, ASIC-based CXL memory devices exhibit generally consistent bandwidth versus latency trends across different
CPU architectures. Figure 6f, 6g, 6p, and 6q present the load and store latency results for the Zen4-1-ASIC-CXL-1
and Zen5-1-ASIC-CXL-3. Despite differences in CPU generation and CXL device types, both systems show similar
latency scaling behavior as bandwidth increases. They reach peak bandwidth at approximately 23-25 GiB/s, after which
latency increases sharply–up to 1700-2000 ns for load operations and 3000-3300 ns for store operations. In contrast,
the Zen4-3-Pool-CXL demonstrates notably different behavior compared to ASIC-based CXL memory devices. As
shown in Figure 6h and 6r, the Pool-CXL maintains more stable latency scaling as bandwidth increases, and achieves
both higher bandwidth and lower peak latency compared to other CXL devices. These results highlight the potential
of pooled CXL memory to extend system bandwidth while maintaining lower latency than conventional ASIC-based
CXL expanders.

Finally, we analyze HBM memory latency performance as bandwidth increases. Figure 6i and 6s show the results for
the Zen4-2-HBM3. For local accesses, both load and store operations exhibit stable latency with nearly flat scaling.
For remote accesses, however, load latency begins to rise sharply after reaching peak bandwidth, while store latency
remains constant beyond the saturation point. A similar pattern is observed in the GH200-HBM3, as shown in Figure 6j
and 6t. In this case, both load and store operations show a sharp increase in latency once peak bandwidth is reached.

3.4 Bandwidth of NUMA Interleaving
In this section, we explore methods to increase available memory bandwidth using a CXL memory expander, with
a focus on maximizing bandwidth through heterogeneous memory interleaving. We first introduce basic approaches
to attaching CXL memory for bandwidth enhancement, followed by methods for managing heterogeneous memory
interleaving. Finally, we present profiling results for the introduced interleaving methods, highlighting the impact of
varying interleaving weights between DIMM and CXL memory.

3.4.1 Memory Bandwidth Expansion with CXL

By integrating a CXL memory expander, we can increase both memory capacity and bandwidth, as it enables the use of
CXL bandwidth in addition to traditional DIMM bandwidth. To enhance bandwidth and capacity with a CXL memory
expander, two fundamental approaches are available.

1We only have one ARM CPU (from GH200) evaluated and it has HBM3, so we put it in this subsection to compare with other AMD CPUs that
have HBM, our evaluated Intel CPUs do not have HBM.
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(c) Zen4-1 with ASIC-CXL-1.

Figure 7: Bandwidth vs Weighted NUMA interleave

CXL Direct-Attached Memory Tiering: In this approach, the CXL memory expander is attached directly to the root
complex without network devices like switches or fabrics to maximize bandwidth and capacity. This method is espe-
cially beneficial for applications constrained by bandwidth or latency. However, it is limited by the number of available
CXL lanes, restricting the number of directly attached devices. This approach has been available since the CXL 1.0
specification, which supports direct attachment.

CXL Switches and Fabric-Attached Memory Tiering: CXL memory modules are connected through fabric and switch
networks, allowing for greater bandwidth and capacity expansion but with added latency. Although this approach offers
higher scalability than direct attachment, it requires a compromise due to the additional latency introduced by the fabric
and switch components. This method is subject to CXL specification limitations. Single-level switch memory tiering
requires devices that support the CXL 2.0 specification, while multi-level switch and fabric topology require CXL
3.0-compliant devices.

3.4.2 Heterogeneous Memory Interleaving with CXL

After attaching the CXL memory expander to the system using one of the methods described in Section 3.4.1, imple-
menting efficient memory management policies becomes essential to maximize overall memory bandwidth. There are
three foundational methods to interleave memory and we present our profiling results of the software-based approach.

Hardware-Based Heterogeneous Interleaving: This method involves configuring the system address map in the BIOS
to interleave between DIMM and CXL memory expanders. However, this approach has limitations; the OS or kernel
cannot control memory allocation in interleaved configurations, and applications that do not benefit from interleaving
may experience inefficiencies due to the lack of control.

Hardware + Software Based Heterogeneous Interleaving: In this method, hardware assigns DIMM channels to different
NUMA nodes, while software tools such as numactl set the interleaving ratio between DIMM and CXL memory. This
approach allows the OS or kernel to manage memory allocation more effectively, but it lacks flexibility for dynamic
workloads because its interleaving ratio is pre-defined instead of being dynamically adjusted at runtime.

Software-Based Heterogeneous Interleaving: This method enables memory allocation by configuring weights for
each NUMA node at the application level. Based on these assigned weights, the kernel manages page allocation
during interleaving. For example, consider a system with three NUMA nodes: NUMA0 and NUMA1 connected to
DIMM, and NUMA2 connected to a CXL memory expander. The application sets weights for each NUMA node: 2,
2, and 1, respectively–in the Linux kernel at /sys/kernel/mm/mempolicy/weighted-interleave/node-number.
When the application interleaves 100 pages, the kernel allocates 40 pages each to NUMA 0 and NUMA 1, and 20
pages to NUMA 2. This approach allows for flexible adjustment of interleaving weights, enabling optimized memory
performance tailored to specific applications and workload characteristics.

3.4.3 Weighted NUMA Interleaving Results of the Heterogeneous Memory

For profiling the bandwidth of heterogeneous memory interleaving, we used the CXL Direct-Attached Memory Tiering
approach in combination with Software-Based Heterogeneous Interleaving. We checked the weighted interleaving
behavior on Zen4-1 and SPR-1 with ASIC-CXL-1 and FPGA-CXL based on the same system setup. Figure 7 presents
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Figure 8: Flush latency when flushing different sized data, all results are from local accesses. We measured flushing
either modified cachelines (“Dirty”) or the unmodified cachelines (“Clean”).

the weighted interleaving result. x-axis represents the weighted interleaving ratios between local DIMM (NUMA0),
remote DIMM (NUMA1), and CXL memory (NUMA2). The y-axis shows the bandwidth value.

FPGA-CXL vs ASIC-CXL-1. Figure 7a and Figure 7b show the weighted interleaving results for FPGA-CXL and
ASIC-CXL-1, respectively. Comparing the interleaving results reveals that ASIC-CXL-1 consistently achieves higher
bandwidth than FPGA-CXL, with an average difference of 8.40 GiB/s, a maximum difference of 17.46 GiB/s, and a
minimum difference of 0.04 GiB/s.

The FPGA-CXL demonstrates limited impact on memory bandwidth improvement; for instance, in the weighted inter-
leaving configuration with DIMMs only (1:1:0), the bandwidth reaches 123.67 GiB/s, whereas the 4:4:1 configuration
yields only a slight increase to 125.26 GiB/s. This suggests that the FPGA-CXL offers a minimal contribution to
memory bandwidth expansion. In contrast, the ASIC-CXL-1 exhibits significantly better bandwidth enhancement ca-
pabilities than FPGA-CXL. In the DIMMs only (1:1:0) configuration, SPR-1-ASIC-CXL-1 achieves 123.63 GiB/s,
increasing to 141.64 GiB/s in the 4:2:1 configuration. This suggests that ASIC-CXL-1 provides better support for
weighted NUMA interleaving than FPGA-CXL.

Observation 3. ASIC-CXL-1 demonstrates better bandwidth scalability with weighted NUMA interleaving com-
pared to FPGA-CXL, achieving higher bandwidth gains across configurations.

Zen4-1 vs SPR-1 with ASIC-CXL-1 Figure 7b and Figure 7c present the weighted interleaving results for SPR-1
and Zen4-1 with ASIC-CXL-1. The results indicate that Zen4-1 does not effectively support the weighted interleaving
method. For example, when comparing the results of pure local DIMM, pure remote DIMM, and the 1:1:0 configuration,
the 1:1:0 configuration shows similar bandwidth performance despite simultaneous usage of remote and local DIMMs.
In contrast, SPR-1 demonstrates better bandwidth scaling when the CXL memory expander is added. The maximum
bandwidth difference between SPR-1 and Zen4-1 is observed at 39.02 GiB/s in the 4:2:1 configuration. This suggests
that SPR-1 achieves superior bandwidth scaling with weighted NUMA interleaving compared to Zen4-1.

Observation 4. SPR-1 achieves superior bandwidth scaling with weighted NUMA interleaving compared to
Zen4-1, especially when the CXL memory expander is added.

3.5 Flush Instructions
In this section, we evaluate CXL memory expander’s performance with flush instructions by testing the latency of
various flush operations (clflush, clflushopt, clwb) under different conditions on both Intel and AMD CPUs. The
clflush instruction flushes all data in a cache line to memory and invalidates the cache line. Similarly, clflushopt
flushes the cache line data to memory and invalidates it, but unlike clflush which is serialized, it can flush multiple
cache lines simultaneously, making it more efficient for flushing large buffers (e.g., larger than several KiB). The clwb
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Figure 9: Atomic operations on CXL are slower and causes more branch instructions to be executed.

instruction, like clflushopt and clflush, flushes the cache, but instead of invalidating the cache line, it writes back
dirty data to memory and keeps the cache line valid, thus improving performance by increasing the cache hit ratio [17].

For this test, we designed a benchmark capable of measuring the latency of the three flush instructions. This framework
can support both modified and unmodified cache states. The unmodified cache state refers to data that has not been
changed by store operations, meaning the cache line is clean. In contrast, the modified state refers to cache lines where
the data has been changed, resulting in dirty cache lines. Additionally, the benchmark allows adjustment of the flush
buffer size, ranging from 64 B to 256 MB, to test performance across different buffer sizes.

Figure 8 shows the latency test results according to flush buffer size on Intel and AMD CPUs, respectively. The x-axis
represents the flush buffer size in bytes, and the y-axis shows the latency per cache line in nanoseconds. These two
graphs illustrate how the latency for cache line flushing changes as the flush buffer size increases.

Intel CPUs. Results on Intel CPUs show improved performance on both clflushopt and clwb compared to clflush.
This is because these instructions can flush multiple cache lines in parallel, increasing the total throughput. However,
flush operations exhibit varying latencies across different CXL devices, largely influenced by the read and write latencies
of the respective CXL devices. Generally, flushing a clean cache line shows lower latency compared to flushing a dirty
cache line. Interestingly, on Intel CPUs, we observe that as the flush buffer size increases beyond 4 MB, the latency of
clflush on clean cache lines begins to rise, gradually approaching that of dirty cache lines.

AMD CPUs. The observation for AMD CPUs shows a different pattern from Intel CPUs. All the three types of flush
instructions demonstrate similar latency, which indicates that clflush on AMD CPU can also be executed in parallel,
different from the Intel CPUs. As the buffer size increases, the latency for all three flush instructions converges beyond
4 KiB.

Observation 5. CXL memory supports all three flush methods. On Intel CPUs, the performance of the clflush
instruction is inferior to that of clflushopt and clwb, as clflush is serialized. In contrast, AMD CPUs do not
exhibit such limitations for the clflush instruction.

3.6 Atomic Instructions
In this section, we explore how the atomic instructions work with CXL system. Atomic instructions play a critical
role in multi-core, multi-threaded computing environments. They guarantee that a single operation is executed without
interruption, preventing other instructions from accessing the affected memory until the operation is completed. This is
crucial for implementing synchronization primitives like locks, semaphores, and other concurrency control mechanisms.

With the introduction of CXL, the memory ecosystem has expanded. Since CXL.io is based on PCIe and PCIe has
supported atomic operations since v3.0, we conduct experiments to verify whether atomic instructions are effectively
supported on shared memory resources using CXL memory expanders. The results confirm that CXL memory has
supported all the x86 atomic operations, including CMPXCHG and other instructions that support the LOCK prefix. We also
measure the atomic load and store latency of CXL memory using CMPXCHG instructions, with all hardware prefetchers
disabled during testing. The results are presented in Figure 9(a) and Figure 9(b). The latency is similar to the regular
load and store latency shown in Figure 4.

When atomic operations are not natively supported, methods such as spinlock or mutex are needed to maintain synchro-
nization. We study the potential spinlock overhead caused by CXL memory. In this test, two threads share data. Each
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Table 2: Lock-free Data Structures

Library Data Structure Category
Boost lockfree::spsc_queue Queue
Boost lockfree::queue Queue
Folly AtomicHashMap Map
Libcds container::MichaelHashMap Map
Junction ConcurrentMap_Linear Map
Junction ConcurrentMap_Leapfrog Map

Table 3: Configurations of Threads and Data Location

Configuration Explanation
Same local DIMM Both threads on the same socket. Data on the DIMM connected to this socket
Same local CXL Both threads on the same socket. Data on the CXL memory connected to this socket
Same remote DIMM Both threads on the same socket. Data on the DIMM connected to the other socket
Same remote CXL Both threads on the same socket. Data on the CXL memory connected to the other socket
Diff setter CXL Setter and getter threads on different socket. Data on the CXL memory connected to setter’s socket
Diff getter CXL Setter and getter threads on different socket. Data on the CXL memory connected to getter’s socket

thread writes a random value to the shared data and then executes a flush operation on it. To maintain synchronization,
a spinlock is applied before the write and released after the flush. We measure the number of executed branches in
the spinlock loop using the perf tool. As shown in Figure 9(c), when the data is allocated in CXL memory, there
is a significantly higher branch count, indicating that the CPU spends more time spinning and waiting for the lock.
This increase is due to the higher latency of CXL memory, which increases the execution time for each thread and,
consequently, causes threads to spend more time in the busy-looping state while waiting for the lock. On Zen4-1, the
spinlock overhead for both DIMM and CXL memory is more than 100% higher than on SPR-1, exceeding their memory
latency difference, suggesting that SPR-1 may have better optimizations to reduce CPU spinning. In summary, when
running workloads with frequent spinlock operations on CXL memory, CPU spinning becomes a significant issue, and
strategies like increasing the sleep time within the spinlock loop can be considered to help mitigate this overhead.

3.7 Lock-free Data Structures
After discussing atomic instructions on CXL systems, we studied lock-free data structures’ (LFDSs) performance
on CXL systems. LFDSs are concurrent data structures that provide thread safety when multiple threads access the
shared data. LFDSs use atomic instructions instead of mutual exclusion mechanisms such as mutex and semaphore.
LFDSs are widely used in latency-sensitive scenarios to provide high-performance concurrent shared data access, e.g.,
requests and completion queue in the NVMe protocol are lock-free ring buffers. Therefore, it is critical to understand
the performance of LFDSs in the CXL system and the differences compared to traditional DIMMs.

To explore LFDSs’ behavior in CXL systems, we collected 6 LFDSs from 4 popular C++ libraries listed in Table 2.
They cover two representative categories of data structures, which are queue for linear memory access and map for
random memory access. We launch two concurrent threads accessing the data structure at the same time. For queues,
one thread executes enqueue operations, and the other one executes dequeue operations, while operations are update
and get for maps. Each thread performs one million operations, and we measure the time it takes for both threads to
complete all. Before measuring, we initialize the data structure with different numbers of elements, so that we can
look into how cache affects the performance and how the performance changes with the data structure’s size. We run
experiments with different thread and data placement locations listed in Table 3.

Figure 10 shows the results. Each row contains results of the same data structure, and each column represents location
configuration of threads and data. In each figure, the y-axis is the total execution time the two threads spend on
completing one million operations each. The x-axis is the space used by data elements, which is simply calculated
by multiplying the element size by the number of elements. Queue’s element size is 8 bytes and map’s is 16 bytes
(8-byte key and 8-byte value). In each figure, each line represents a machine with different CPU and CXL devices.
Zen5-1-ASIC-CXL-3 machine only has one socket, so we can only run experiments with placing two threads on
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Figure 10: Lock-free data structure performance on different systems. The x-axis shows the size of all elements in the
data structure, and the y-axis shows the total time to complete all operations in the microbenchmark. Each benchmark
has a setter thread and a getter thread, each executing 1 million operations. We vary the thread and data location on
different systems and measure performance. Same means both threads are on the same socket, and Diff means they are
on separate ones. When both threads are on the same socket, the Local represents that DIMM/CXL memory is directly
connected to the socket, and the Remote one is connected to the other socket. If threads are on different sockets, the
Setter/Getter indicates that the DIMM/CXL memory is connected to the socket on which the setter/getter thread runs.
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the same socket and data on either local DIMM or local CXL memory. Because benchmark of boost multi-producer
multi-consumer (MPMC) queue always crashes on EMR-3-SHM-CXL machine, we cannot get the performance data
from it. Some data points are missing due to out-of-memory errors.

For both boost single-producer single-consumer (SPSC) queue and MPMC queue, the performance does not change
with size since queue’s memory access is linear. When both threads run on the same socket, on most machines, DIMM
does not outperform CXL memory apparently. Cache access performance should dominate this situation. However,
remote CXL memory has much more performance penalty, up to 2X, on SPSC queue on SPR-1-ASIC-CXL-1, SPR-1-
FPGA-CXL and EMR-3-SHM-CXL machines. We do not observe the same change on the MPMC queue. When setter
and getter threads run on different sockets, although memory access is linear, CXL memory introduces substantial
overhead compared to DIMM. It shows that message communication overhead between CPU sockets is different for
DIMM and CXL memory even when data is cache.

Observation 6. Message communication overhead between CPU sockets is different for DIMM and CXL memory
even when data is in cache.

Maps behave differently from queues. Their performance is dominated by cache or inter-socket communication when
data size is small, while gradually dominated by memory access latency when data size is growing larger. However,
even when data size is small and both threads run on the same socket, maps’ performance on remote CXL memory
with all Intel SPR CPUs is significantly worse than local CXL. At this stage, performance on local CXL memory is
clearly dominated by cache access and it is getting worse as the data size increases. Maps in remote CXL memory with
Intel SPR CPUs seem to not benefit from cache as much as local CXL memory. It shows that Intel SPR CPUs’ cache
policy is different for local and remote CXL memory. We do not observe the same behavior on the Intel EMR CPU
and the AMD CPU, nor when we compare the local DIMM with the remote one. When data size is large enough that
performance is dominated by memory access latency, CXL memory has considerable overhead compared to DIMM,
and remote CXL memory is worse than local CXL memory. On most machines, local CXL memory clearly has higher
latency than remote DIMM, but EMR-2-ASIC-CXL-3 shows that local CXL memory’s performance could be close to
remote DIMM. It demonstrates the possibility that the performance of the CXL memory can be comparable to that of a
DIMM connected to a remote socket when the hardware is well designed.

Observation 7. Intel SPR CPU’s cache policy can be different for local and remote CXL memory. Local CXL
memory can benefit from cache better than remote one.

4 Micro-Architecture Characteristics

4.1 Host CPU Cache Utilization of CXL Memory
Prior work has demonstrated that PCIe peripherals like NICs are only capable of utilizing a limited portion of the
CPU’s LLC via Direct Data I/O (DDIO) [18, 19]. Because the CXL.io protocol is built on top of PCIe, it is essential to
investigate whether the same limited cache utilization also applies to CXL memory devices.

To that end, we conducted a pointer-chasing experiment designed to reveal host CPU cache utilization by CXL memory.
We began by partitioning a contiguous memory region into 64-byte (one cache line) blocks. Each block is initialized
with a pointer that randomly points to another block. By recursively dereferencing these pointers, all blocks are accessed
in a random order. We controlled the stride size between blocks and varied the total number of blocks in the pointer-
chasing task, measuring the average access latency for each block. This approach enables us to infer the underlying
cache utilization and structure by observing how access time scales with both the stride size and the number of blocks.
A rise in observed latency indicates an increased likelihood of cache evictions, thereby shedding light on the extent to
which CXL memory can occupy and benefit from the CPU’s LLC.

We conducted our experiments under both local and remote CXL access scenarios. We examined different instruction
types, including regular load/store, non-temporal instructions and atomic instuctions.

Regular Load/Store: Figure 11 presents heat maps of read latency collected from the pointer-chasing benchmark.
The deep blue regions represent cache hit latency, indicating that the corresponding stride size and block count are
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Figure 11: Cache utilization of local and remote memory read in different systems with CXL and DIMM.
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small enough for all data blocks to reside in the CPU cache. When moving beyond these regions, latency increases due
to cache evictions. As such, the shape and extent of the deep blue areas reflect the structure and effective capacity of the
cache. The first two rows in Figure 11 show the results obtained using CXL data. On both Intel and AMD CPU, when
the data originates from a local CXL device, the entire LLC capacity can be fully utilized. However, for data accessed
via a remote socket CXL device, all Intel machines exhibit a distinct pattern. Specifically, the maximum cache capacity
usable by remote CXL data is approximately 1/8 of the LLC size on Intel SPR and 1/4 on Intel EMR. In contrast, AMD
cache shows a symmetrical pattern for local and remote CXL access.

We performed the same tests on DIMM as shown in the 3rd and 4th rows in Figure 11, and found both local and remote
DIMM access can fully utilize the LLC on Intel and AMD CPUs. This suggests that the reduced cache capacity for
remote CXL traffic on Intel machines is likely caused by the implementation of the CXL controller on the host CPU
side. Furthermore, similar results were observed for regular store, and these findings remained consistent across all
tested platforms. Consequently, developers should be cautious when employing remote CXL memory on Intel CPUs
for data-intensive or latency-sensitive workloads, as constrained cache utilization may increase average latency.

Non-Temporal Load/Store: We evaluated non-temporal memory operations, which are typically employed to mitigate
cache pollution for data that is not expected to exhibit high reuse. Our findings reveal that, on Intel platforms, non-
temporal loads originating from either DIMM or CXL memory continue to leverage the LLC in a manner akin to
regular load instructions. Consequently, the previously noted asymmetry of LLC utilization between local and remote
CXL memory remains evident under non-temporal loads on Intel CPUs. In contrast, on AMD CPUs, non-temporal
loads bypass the LLC entirely, relying instead on higher-level caches. For non-temporal stores, they bypass the entire
cache hierarchy on all the platforms and memory devices, thereby avoiding cache utilization.

Atomic Load/Store: We also evaluated the cache utilization of atomic operations, and the results are consistent with
those observed for regular load/store operations.

Observation 8. On Intel SPR and EMR CPUs, remote CXL access is unable to fully utilize the LLC, and this
constraint is independent of both the implementation of the CXL device and the types of memory operations
employed.

SNC Mode: In SNC mode, a single CPU chip is partitioned into multiple NUMA nodes, each independently managing
a region of the LLC. Our Intel CPUs support up to SNC2, which splits the chip into two sub-NUMA nodes. All the
other tested CPUs have consistent results, so we use the results of SPR-1 as an example in Figure 12.

As Figure 12a shows, when the pointer-chasing task is executed on one node with local DIMM as the data source, the
memory accesses are confined to that node’s share of the LLC, thereby limiting utilization to half of the total LLC
capacity, following the SNC partitioning.

In contrast, remote socket DIMM access and local CXL access (Figure 12b) can still use the entire LLC, indicating a
distinct behavior based on the data source’s locality.

In SNC (Sub-NUMA Clustering) mode, the CPU divides a single chip into multiple NUMA nodes, each managing its
portion of the LLC. Our SPR-1 machine supports up to SNC2, which splits the chip into two NUMA nodes, and each
node controls half of the LLC. When running the pointer-chasing task on one node, if the data comes from local DIMM
DRAM, only half of the LLC is utilized, following the SNC partitioning, shown in Figure 12a. However, remote socket
DIMM access (Figure 12b and Figure 12c) can still use the entire size of the LLC.

This is consistent with the previous finding [20], indicating that SNC does not enforce LLC partitioning for local
CXL or remote DIMM accesses. For remote CXL, LLC usage remains limited and is shared between the two SNC
nodes within the same socket. AMD implements a similar feature known as Nodes per Socket (NPS). However, in our
experiments on AMD systems, we did not observe LLC partitioning effects under the NPS mode, regardless of whether
DIMM DRAM or CXL memory is utilized.

Intel CAT: Intel CAT [21] is another mechanism available for cache partitioning. CAT allows the definition of
multiple Classes of Service (CLOS), each linked to a specific bitmask. Bits set to 1 within a given bitmask designate
cache ways or slices accessible to the corresponding CLOS. Cache partitioning can be achieved by assigning these
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(a) Local DIMM load
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(b) Remote DIMM load
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(c) Local CXL load

1

4

16

64

256

1 K

4 K

16 K

64 K

256 K

1 M

64 25
6

1
K

4
K

16
K

64
K

25
6

K

1
M

4
M

16
M

64
M

Stride Size (Byte)

#
of

64
-B

yt
e

B
lo

ck
s

0

100

200

300

400

500

(d) Remote CXL load

Figure 12: Cache utilization under SNC2 on SPR-1-ASIC-CXL-1
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(a) Local DIMM load
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(b) Remote DIMM load
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(c) Local CXL load
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(d) Remote CXL load

Figure 13: Cache utilization under NPS2 on Zen4-1-ASIC-CXL-1

CLOS masks to specific processes or CPU cores. We evaluated whether CXL memory access adheres to CAT-imposed
cache partitioning. Our experiments covered various CAT masks. The result is shown in Figure 14. For example, when
the LLC CAT mask is set to 0xff (the default is 0x7fff), we observe that the LLC size available to CXL memory is
reduced, allowing only about half of the associativity to be used. The results showed that both local and remote CXL
memory accesses consistently follow CAT-based cache partitioning rules.

Notably, the maximum cache utilization for remote CXL data remains limited and cannot be increased by modifying
the CAT bitmask. This behavior contrasts with that of DDIO caches, where the upper limit of the capacity can be
adjusted through CAT settings [19].

Observation 9. Data originating from CXL memory do not follow the LLC partitioning under SNC mode. For
scenarios requiring strict LLC partitioning for global data, CAT is recommended as a more effective solution.

4.2 Remote CXL Access Analysis
This section provides an in-depth study of remote CXL access on Intel CPUs, using (SPR-1) as an example. The
analysis focuses on both the cache allocation policy and the data path analysis.

Cache Allocation Policy: The DDIO cache typically utilizes a fixed LLC location [18]. Given that remote CXL
access also uses a limited LLC capacity, we investigate whether it follows a similar caching mechanism. First, we test
the remote CXL access cache utilization with DDIO function disabled. The results still show that it has a limited LLC
usable size. Then we investigate where this region is located in the LLC. In the experiment, there are two processes: P0
and P1. P0 accesses data from remote CXL, while P1 accesses data from local DIMM. Both processes run on separate
physical cores, each bound a specific CAT mask.

From previous CAT tests, a mask with four consecutive ‘1’ bits restricts the cache size to the same amount as the upper
limit of remote CXL data’s usable LLC size. First, we run P0 with a 4-bit‘1’ CAT mask and change the mask locations
to see if the remote CXL LLC region can be changed by CAT. P1 also uses a 4-bit‘1’ CAT mask. During each test, we
keep P0’s mask fixed and shift P1’s mask to observe where LLC eviction occurs. The results are shown in Figure 15a.
We measure the average access latency of P1. For each P0’s mask, the latency spike of P1 consistently appears under
the exact same CAT mask with P0, suggesting that both processes share the same LLC region and cause eviction with
each other. This implies that the LLC region utilized by remote CXL data can be altered by modifying the CAT mask.
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(a) CAT Mask: 0x7fff (Default)
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(b) CAT Mask: 0x00ff
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(c) CAT Mask: 0x000f
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(d) CAT Mask: 0x0003

Figure 14: Cache utilization of local CXL load under different CAT masks on SPR-1-ASIC-CXL-1
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Figure 15: (a) (b) Remote CXL access with different CAT masks on SPR-1-ASIC-CXL-1. (c) CXL data path when
accessing from remote CPU socket.

Next, we investigate whether remote CXL access has a preferred LLC region under the default CAT mask (0x7fff on
SPR-1). The "Baseline" in Figure 15b represents the scenario where only P1 is running, resulting in all data hitting the
LLC. When both P0 and P1 are running, if P0 is using a fixed cache region, we will expect a latency spike similar to
Figure 15a. However, no such spike is observed during the test. While the average latency remains significantly higher
than typical LLC hit latency, indicating that eviction is occurring, this suggests that remote CXL data may dynamically
select its limited-size LLC region, different from DDIO cache.

Observation 10. On SPR-1, the limited LLC region location for remote CXL data can be dynamically altered,
different from DDIO cache policy.

Data Path Analysis: Next, we analyze the data path of remote CXL access. To determine whether remote CXL data
traverse the Intel Ultra Path Interconnect (UPI) or only the PCIe root complex to reach the destination socket, we
conduct a bandwidth test for remote CXL access while simultaneously monitoring UPI activity using Intel PCM [14].
During the bandwidth test, the UPI occupancy rate reaches 20% to 30%, indicating that remote CXL access utilizes
UPI as its data path.

In addition, we analyze the cache footprint of remote CXL access. When a socket directly accesses remote CXL data,
the data only stays in the destination socket’s LLC rather than both sockets’. Figure 15c shows the data path of directly
accessing CXL data from the remote socket.

We further explore if first placing the data in the local socket’s LLC and then reading it from the remote socket could
bypass the LLC size limitation for remote CXL data. First, we allocate a shared data block that is larger than remote
CXL cache limit but smaller than the LLC size. Then, we run thread 0 on the local socket, randomly accessing all the
shared data and recording the average access time. After multiple iterations, since all the data is stored in the cache,
the average access time is below 50 ns, and the cache miss rate is low. Next, we run thread 1 on the remote socket,
similarly accessing all the shared data repeatedly. The results show that when the shared data comes from DIMM
DRAM (regardless of which socket it belongs to), the average access latency for thread 1 is similar to thread 0, and
the cache miss rate remains low. This is because the shared data eventually gets cached in the remote socket’s LLC.
However, when the data comes from CXL memory, thread 1’s average access latency increases to 100–150 ns, and the
cache miss rate increases significantly. This is due to the remote socket being unable to store all the data in its LLC,
causing some data to be evicted back to the local socket’s cache.

This indicates that even when CXL data is already stored in the local socket’s LLC, accessing this data from the remote
socket still faces the LLC size limitation. Therefore, we can confirm that as long as the data originates from CXL
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Access Type Device Latency (ns)
AMD Intel

Local
ASIC-CXL-1 332.95 326.53
FPGA-CXL N/A 452.69

DIMM 158.37 210.67

Remote
ASIC-CXL-1 414.10 417.01
FPGA-CXL N/A 528.68

DIMM 245.47 256.67
(a) Prefetch instruction latency.
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(b) Load latency after prefetching.

Figure 16: Prefetching measurements: Figure 16a shows the latency of executing the T0 prefetch instruction on different
systems, and Figure 16b presents the load latency after issuing different types of prefetch instructions.

memory, the LLC size limitation persists on the remote socket. We assume that this may be due to the CPU identifying
the data as originating from a remote node via the physical address during the address translation process, thereby
adopting a different cache mechanism.

Observation 11. When the remote socket directly accesses CXL data, the data are cached only in the remote
socket, not both. Caching CXL data in the local socket first and then moving it to the remote socket cannot bypass
the LLC size limit for remote CXL access.

4.3 CPU Prefetching on CXL Memory
This section presents our study of CPU prefetching on CXL memory, using both (1) software prefetching instructions
which are instructions provided for programmers to hint the CPU to prefetch data, and (2) hardware prefetchers which
are CPU’s built-in cache prefetchers.

Software Prefetching Instruction: The x86 ISA supports various types of locality hints for software prefetching
instructions, including T0, T1, T2, W and NTA, which fetch data to a specified location in the cache hierarchy based on
the hint. According to Intel and AMD documentation, PREFETCHT0, PREFETCHW, and PREFETCHNTA bring data to the L1
cache or closer buffers, while PREFETCHT1 and PREFETCHT2 place data in the L2 cache or higher levels. PREFETCHNTA
prefetches data to L1 cache in the LRU position or directly to line fill buffer (LFB) to avoid cache pollution, depending
on the architecture implementation. This is useful for data that are accessed once and then discarded. PREFETCHW is a
hint to the processor to prefetch data from memory into the cache in anticipation for writing.

We first measure the software prefetching latency of both CXL memory and DIMM DRAM. Figure 16a shows the
latency of PREFETCHT0. On Zen4-1-ASIC-CXL-1, the prefetching latency for the CXL memory device is 332.95 ns
for local access and 414.10 ns for remote access. For DIMM, the local access time is 158.38 ns, while the remote
access time is 245.47 ns. On SPR-1-ASIC-CXL-1, the CXL memory device shows 326.53 ns for local prefetching
and 417.01 ns for remote prefetching. For DIMM, the local latency is 210.67 ns, and the remote latency is 256.67 ns.
Compared with the load latency in Figure 4, the performance of both CXL and DIMM software prefetching is consistent
with their load latency measurements. For other prefetching hints, the latency is similar.

Next, we investigate whether the data from the CXL devices adhere to this locality mechanism. In our experiment, we
first issue a prefetch instruction to fetch the data, then serialize the pipeline to ensure the prefetching completes, and
finally measure the latency of a load or store on the prefetched data. The results are shown in Figure 16b. On both
CXL and DIMM memory of SPR-1, we observe that the load/store latency after a PREFETCHT1/T2 is approximately
5ns higher than other hints, aligning with the latency difference between L1 and L2 caches. This outcome matches
Intel’s manual [22], which states that both T1 and T2 hints bring data to the L2 cache and are implemented identically.
However, on Zen4-1, we detect a discrepancy between CXL and DIMM memory. Specifically, the load/store latency
after a PREFETCHT1/T2 on CXL data is over 20ns higher than on DIMM data. We find that on Zen4-1, even when
serialization is added, in some cases PREFETCHT1/T2 does not fetch the data into the cache, and the data remains in
CXL or DIMM memory, leading to a difference in overall average load latency. This phenomenon is not observed with
other hints. In cases where PREFETCHT1/T2 successfully prefetches the data, the average load latency shows 4 cycles
higher than other hints on average. This result matches what is advertised in AMD’s documentation [23] that the new
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(a) DIMM: All the Prefetchers Off
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(b) DIMM: L1_DCU_IP Data Prefetcher On
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(c) DIMM: L2_AMP Data Prefetcher On
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(d) CXL: All the Prefetchers Off
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(e) CXL: L1_DCU_IP Data Prefetcher On
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(f) CXL: L2_AMP Data Prefetcher On

Figure 17: Hardware prefetcher footprint on SPR-1-ASIC-CXL-1

feature of Zen4 is that PREFETCHT1/T2 put data into L2 cache, but we currently do not have a reason why the T1/T2
are sometimes dropped.

Hardware Prefetcher: To investigate whether the CPU hardware prefetcher performs differently during the pointer-
chasing task on CXL memory, we configure the pointer-chasing access pattern to be sequential to observe the hardware
prefetcher’s footprint. After each access round, we also flush all test data back to memory to minimize cache noise.

Our results indicate that most CPU hardware prefetchers maintain a consistent footprint across different memory
devices on SPR-1-FPGA-CXL, SPR-1-ASIC-CXL-1, and Zen4-1-ASIC-CXL-1. We illustrate two footprint examples
on SPR-1-ASIC-CXL-1 in Figure 17: the L1_DCU_IP and L2_AMP data prefetchers. The L1_DCU_IP prefetcher begins
fetching after sequentially accessing 8 64-byte blocks each when the stride is below 4 KiB. With a stride between 4 KiB
and 32 KiB, it starts prefetching after 2 blocks. For strides over 32 KiB, it stops prefetching. The L2_AMP prefetcher,
on the other hand, activates after accessing 256 KiB data sequentially but prefetches only within a 4 KiB stride range.
One exception we observe is that, on SPR-1, the L1_DCU_IP data prefetcher only prefetches data for loads to the local
socket, while on Zen4-1, the L1 data prefetcher works for both local and remote loads. These prefetchers behave the
same way when using CXL as when using DIMM.

Observation 12. CXL memory has supported both x86 software prefetching instructions and CPU hardware
prefetchers, showing consistent results with DIMM DRAM.

5 Accelerator Usage

5.1 CXL Type 2 Accelerator Memory Performance
In this section, we study the memory access performance from the perspective of a CXL Type-2 Device. A CXL Type 2
Device is one of the most important applications of the CXL protocol, supporting CXL.io, CXL.cache, and CXL.mem
protocols. This enables cache-coherent memory transactions between the CXL device and the host memory.

To support such a study, we implemented a custom CXL Type 2 device on an Intel CXL Agilex-I series FPGA with
CXL support. Figure 18(a) shows an overview of the infrastructure, based on the CXL Type 2 Design Example from

24



Host 
Machine

Intel 
R-tile 
CXL IP

CXL.io
Logic

CXL.mem / CXL.cache AXI AVMM

CXL Type-2 Endpoint

DCOH

CXL Link

Type-2 Design Wrapper

Slice 0
Cache/mem 

handler

Host Cache

Slice 1
Cache/mem 

handler

Host Cache

Custom CSR Array

Read Latency Profiler
(CAFU)

Memory 
Controller

DDR4

DDR4

CXL.io

Profiling Controller
AVMM 
Arbiter

C2C 
Syncing

AXI.araddr
AXI.arruser
AXI.rdata …

Custom Control Protocol

(a) Type 2 FPGA prototype overview.

0

250

500

750

1000

1250

1 K 2 K 4 K 8 K 16 K 32 K 64 K32 K 128 K 256 K 512 K 1 M 2 M 4 M
Host Memory Region (Byte)

A
ve

ra
ge

La
te

nc
y

(n
s)

NUMA 0

NUMA 1

Cacheable owned

Cacheable shared

Non-cacheable

(b) CXL Type 2 Device cache profiling (cache size 256KiB).

Figure 18: FPGA implementation used in studying Type 2 device memory performance

Intel. The host connects to the FPGA via the CXL Link. CXL transactions are first processed through the Intel R-Tile
CXL IP, splitting all transactions into CXL.io and CXL.cache/mem protocol transactions, which are handled by the
DCOH (Device Coherency Engine) and CXL.io logic, respectively.

To enable profiling, we implemented a custom latency profiler on the FPGA side as a Type 2 CAFU (Coherent
Accelerator Function Unit). A CAFU interfaces with the CXL controller on the FPGA via the AXI4 protocol. The
latency profiler measures the read latency of a memory request by recording the elapsed time between sending out
the transaction and receiving a valid response on the AXI interface. For the host to communicate with the profiling
infrastructure, we use a list of CSR (Config and Status Registers) arrays backed by FPGA registers. Every CSR register
has a designated function, for example, as a command, profiling argument, and results. To initiate profiling, the host
program first writes profiling arguments (host physical address, cache hint options, and etc.), and selects the read latency
profiling function through the command register. This triggers the FPGA to send a host memory reading request. Upon
finishing, the host program accesses the read latency through the result register.

On the FPGA, the Profile Controller module polls the content of the CSR array and performs corresponding actions.
An AVMM arbiter is in place to handle the contention between the host and FPGA accessing the CSR registers. After
the host program writes a read instruction in the command register, the profiling controller polls the value and triggers
the Latency Profiler to start. The Latency Profiler returns a measured latency upon receiving a valid AXI response
and passes the latency to the profiler controller, which subsequently writes the CSR result register. Then, the host
program can read the result by memory-mapping the PCIE BAR space. Proper cross-clock domain synchronization is
implemented between the Latency Profiler and Profile Controller to ensure data integrity.

5.1.1 Single Read Latency

Figure 18(b) shows the single read latency to the host memory initiated by the Type 2 device with no other system load.
We measured across 3 request cache hints (Non-cacheable, cacheable shared, and cacheable owned). We also measure
requests for local and remote NUMA nodes from the CXL device’s perspective. Due to platform constraints, each
request is of cacheline size (64B), and no burst read option is used. For non-cacheable reads, the latency is about 590
ns and 620 ns on local and remote NUMA nodes, respectively. For cacheable requests, cold start latency is equivalent
to their non-cacheable counterparts, and then drops to about 110ns regardless of physical address. This conforms with
our expectation of on-device caches as part of the DCOH. For read requests, the final cacheline state of exclusive and
shared does not incur latency differences.

5.1.2 Device-Side Cache Size Analysis

There are two caches on the CXL endpoint of a Type 2 device: a Host Cache and Device Cache, for cache data
originating from the host memory and device memory (HDM), respectively. They are not to be confused with cache on
the host and cache on the device. The size of the caches is configurable by the number of DCOH (Device Coherence
Agent) slices. Our setup includes 2 DCOH slices, totaling 256 KB of Host Cache and 64KB of Device Cache.

In this section, we profile the Host Cache on a Type 2 device by sequentially accessing a predefined host memory
region on different NUMA nodes and using different cache hints: non-cacheable, cacheable owned, and cacheable
shared. To avoid link contention, the requests are not interleaved, so a subsequent request is only issued after receiving
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the previous valid response. CXL.cache works on the MESI coherence protocol, allowing 4 states for cachelines:
Modified, Exclusive, Shared, and Invalid. Cacheable owned hints always invalidate the cacheline from the host cache
and put the cache line in Exclusive in the device cache. The system operates in fully trusted CXL mode. During the
experiment, the host provides the device with the physical address and profile region size through the PCIE interface.
Then, the FPGA returns the average latency of individual accesses at the cacheline granularity. Results are shown in
Figure 18(c). We observe the clear latency jump at the cache capacity of 256 KB, adhering to our Host Cache capacity
with 2 DCOH slices. Cached data access times are stable around 110 ns, similar to the previous section. However, on
average, read accesses using a cacheable owned hint result in about 180 ns additional overhead compared to those with
a cacheable shared hint. The discrepancy is due to the extra communication required to forfeit ownership when evicting
an Exclusive cacheline. Additionally, we note that cacheable requests are more expensive than non-cacheable requests,
should they cause evictions.

Observation 13. The cost of capacity eviction incurred by new cacheable requests of an Exclusive cacheline is
much higher than that of a Shared cacheline, and both cacheable requests are more expensive than a non-cacheable
read. Without a high cache hit rate, using cacheable requests as the default HDM request type for Type 2 devices
is not recommended.

5.2 Intel DSA
Intel DSA is a hardware engine for offloading memory movement and transformation operations from the CPU cores.
To understand how Intel DSA compares against memcpy in latency and bandwidth, we evaluate them across local
DRAM, FPGA-CXL, and ASIC-CXL-1 on SPR-1. Intel DSA is configured with the parameters listed in Table 4. We
use Intel DSA using Intel’s Data Movement Library (DML), and all experiments were run on Node 0.

5.2.1 Memory Copy Latency

To understand how Intel DSA’s latency compares against memcpy, we compare the latency of copying 512 B to 512 KiB
of data using Intel DSA and memcpy. We do these experiments on a loaded and an unloaded system.

Figure 19 presents the latency comparison between Intel DSA and memcpy on a local memory node. When the data is
evicted from the cache prior to the copy, DSA outperforms memcpy for transfers larger than 4 KiB. On the other hand,
if the data remains cached, Intel DSA requires significantly larger transfers, around 128 KiB in our experiments, to
match the performance of memcpy.

Conversely, for a loaded system running 10 parallel threads copying different data, we observe that Intel DSA performs
similarly to memcpy at 16 KiB when the data isn’t cached. However, when the data is cached, Intel DSA is consistently
slower than memcpy.

For slower memories, that is, the FPGA-CXL and the ASIC-CXL-1, we observe that the break-even point between Intel
DSA and memcpy is at 2 KiB when data is not present in the caches. If the data is already cached, memcpy consistently
outperforms Intel DSA.

Further, when comparing copy latency for uncached data, we notice that regardless of the memory type, Intel DSA’s
performance over memcpy improves with buffer size. For example, Intel DSA is 2× faster than memcpy at 32 KiB, but
3.5× at 512 KiB.

Finally, when the data being copied is available in the caches, memcpy can directly fetch the data from the caches,
making it significantly faster than Intel DSA for all memory types.

Observation 14. On an unloaded system, Intel DSA can outperform memcpy for transfers larger than 4 KiB when
using local DRAM and 2 KiB for CXL-based memories. However, if the data is already in the system caches, the
break-even point can increase to as much as 128 KiB.

5.2.2 Memory Copy Bandwidth

Next, we will examine the total bandwidth achieved by Intel DSA and memcpy. For this comparison, we do not include
the results for 10 threads with data eviction, as eviction introduces idle cycles for the CPU, inflating the bandwidth
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Table 4: Intel DSA configuration.

Attribute Value Attribute Value
DSA Node 0 Number of Work Queues 2
Max Batch Size (Per WQ) 32 Max Transfer Size 2 GiB
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Figure 19: Latency comparison of using DSA and memcpy under different configurations.
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Figure 20: Bandwidth comparison of using DSA and memcpy under different configurations.
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results.

Figure 20 compares the bandwidth achieved when copying data using Intel DSA and memcpy. With a single thread,
neither Intel DSA nor memcpy can reach the peak device bandwidth as measured by Intel MLC [24]. However, with 10
simultaneous threads, Intel DSA reaches the peak bandwidth for slower memories (FPGA-CXL and ASIC-CXL-1),
though not for the local DRAM on SPR-1. When data is cached, memcpy outperforms Intel DSA by a significant margin.
On the other hand, when data is not cached, Intel DSA significantly outperforms memcpy.

Observation 15. Intel DSA and memcpy require multiple threads to fully saturate the bandwidth of local memory
and CXL-based memories. When the data is not cached, Intel DSA consistently delivers much higher bandwidth
than memcpy, particularly for larger buffer sizes. However, when the data is cached, memcpy outperforms Intel
DSA, although the performance difference narrows as the buffer size increases.

6 Applications
Based on our prior sections’ profiling of CXL system architecture and accelerator performance, we further study the
application performance in such systems. In this section, we study machine learning inference, graph processing, and
key-value store performance on CXL systems. We observe discrepant performance characteristics when comparing
CXL vs. CPU memory as well as comparing different CXL devices. We then analyze and connect such discrepancies
with our architecture-level observations to explain the application-level performance characteristics.

6.1 Machine Learning Workloads
We study the inference performance of large language models (LLMs), one of the most popular and important workloads
in today’s machine learning tasks, on different CXL system configurations, using various machine learning frameworks,
including PyTorch, llama.cpp, and vLLM:

• Meta’s Implementation with PyTorch [25]: In this environment we use PyTorch with model files provided by
the Meta’s Llama3 repository, including generation.py, model.py, and tokenizer.py. We refer to this setup
as “PyTorch” in the following sections.

• llama.cpp [26]: llama.cpp is a C++ implementation of Llama3 inference, and we evaluate the Quantized Llama3
model with it.

• vLLM [27]: vLLM is a high-throughput and memory-efficient LLM inference engine, and we evaluate the Llama3
inference with it.

We use the WikiText dataset [28] in these environments whenever available. For the vLLM throughput test, we use the
sharedGPT v3 dataset [29] to measure performance under modern workload conditions.

6.1.1 PyTorch with Meta’s Implementation of Llama3

We study the performance of Meta’s Implementation with PyTorch and use it as a baseline to compare with the
following llama.cpp and vLLM studies. In this setup, we use the testing scripts from Meta’s Llama3 repo [30], including
the generator and tokenizer scripts to run inferences. The input data are tokenized and processed in fixed-length
segments, and the processing time is measured per each input chunk. We calculate the number of tokens generated per
second to evaluate the inference performance and configure the memory devices through numactl. We use numactl’s
cpunodebind option to bind the PyTorch process to the CPU socket assigned to a specific NUMA memory node.

Token per second measurements. Figure 21 shows our evaluation of Llama3 inference performance with PyTorch
using different CXL machines. We first observe that inference with DRAM only is generally faster than CXL memory,
and among different CXL memory devices, ASIC-CXL-1 is usually faster than FPGA-CXL, with the exception that
using remote FPGA-CXL on SPR-1 is faster than remote ASIC-CXL-1. It is likely caused by the lower efficiency when
using the ASIC-based CXL memory expander on the remote socket, due to the lack of native support for the CXL.mem
protocol with the current generation of SPR-1 CPUs. In this case, the FPGA-based CXL.mem implementation may
leverage Intel’s in-house optimizations in their FPGA CXL IP to provide better remote access performance.
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Figure 22: PyTorch profiler’s results on SPR-1 with FPGA-CXL.

When using different CPU binding settings, we find that with SPR-1 and ASIC-CXL-1, binding CPUs (Local and
Remote) offers higher performance using DRAM, than allowing CPUs to be freely allocated on both sockets (Default).
As shown in Figure 21, binding SPR-1 CPU for local CXL access performs significantly better than other settings. This
indicates that binding CPUs through numactl helps PyTorch better schedule tasks and allocate memory when using
slower devices, such as CXL memory. In contrast, we do not observe similar performance characteristic on Zen4-1,
whose overall performance is lower than SPR-1, potentially because PyTorch under-utilizes the CPU and memory
performance on Zen4-1.

Function-level profiling. We use the PyTorch profiler to get high-level performance characteristics of the Llama3
inference. The tool reports the execution time of each internal functionality. As shown in Figure 22, using CXL
memory incurs significantly longer execution time for memory-intensive operations, especially in matrix multiplication
functions including aten::mm, aten::matmul, and aten::mul. These operations access the matrix data stored in off-core
memory and incur longer execution time if CXL memory is used instead of DRAM.

Observation 16. CXL can cause higher cache miss rates even with the same model inference on the same
framework.

6.1.2 llama.cpp

In this section, we evaluate the performance of the language model using a perplexity benchmark in the llama.cpp
environment. Specifically, the model used is Meta-Llama-3-8B.Q4_K_M.gguf, with 8.03 billion parameters in GGUF
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Figure 23: Token per second (TPS) comparison between all three frameworks on various machines with different
memory types.

V3 format. The perplexity benchmark is run using the WikiText dataset, with a context length of 512 tokens, a batch
size of 2,048 tokens, and a sequence count of 4. We also enable SMT threads and SIMD optimizations to fully utilize
the hardware resources.

Figure 23 shows the tokens-per-second performance under different memory and CPU binding configurations on both
SPR-1 and Zen4-1 CPUs. If local or remote is specified, we bind the model to one CPU socket and allocate all the
data in its local or remote memory devices. Otherwise, no binding is enabled, and all sockets and memory devices are
utilized.

Compared to PyTorch Inference of LLaMA, Llama.cpp shows less performance degradation when using CXL memory.
When binding the model to one socket, SPR-1 performs better on both DIMM and CXL. However, when running
without socket binding–allowing the model to utilize both sockets–Zen4-1 outperforms SPR-1 on both DIMM and
CXL. Specifically, Zen4-1 achieves up to a 191.97% increase in performance on DIMM and a 241.11% increase on
CXL. In contrast, SPR-1 scales less efficiently with more computing resources, with a performance increase of only
66.76% on DIMM and 75.50% on CXL. This suggests that Zen4-1 benefits from better socket interconnect performance
and a more efficient scheduling policy, consistent with the findings of Section 3.2.

For local and remote access comparison, on SPR-1, the performance difference on DIMM memory is slight (Local
51.76 vs. Remote 50.48, a 2.47% decrease). In contrast, on Zen4-1, there is a 19.59% decrease on the remote DIMM.
However, when using remote CXL, SPR-1 shows a much larger performance drop (25.55%) compared to Zen4-1
(19.98%). This larger drop on SPR-1 could be due to lower bandwidth and a smaller usable LLC size for remote CXL
accesses, as shown in previous sections.

When comparing socket binding and no binding, unlike PyTorch inference, using CXL without socket binding even
outperforms using local DIMM or remote DIMM with binding. This suggests that the Llama.cpp workload is more
sensitive to CPU resource availability than to memory latency.

6.1.3 vLLM

In this section, we evaluate another inference framework, vLLM: a library and platform designed for efficient inference
and serving of LLMs. vLLM is widely recognized for its memory-efficient operations, which guarantees high perfor-
mance by optimizing memory utilization and batching requests. We deploy the same Llama3 8B model and run the
benchmark_throughput.py script provided by the library on the SPR-1 with ASIC-CXL-1. The dataset is ShareGPT_v3.
The key value (KV) cache size is set to 30 GiB. We use the same measurement as in previous sections and compare
different memory and CPU configurations.

The results are presented in Figure 23. We observe a much higher throughput on vLLM than on Pytorch and llama.cpp
on DIMM and local CXL. Local CXL shows a decrease of around 60% compared to local DIMM, which is similar to
their difference in latency. However, remote CXL shows significantly lower performance, with a throughput of only
9.81 tokens per second. This indicates that besides latency, cache size and bandwidth limits could also impact remote
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CXL performance. This also harms performance under the default strategy (without CPU binding), because some
threads access the CXL memory from the remote socket. This shows that vLLM is sensitive not only to memory latency
but also to bandwidth and CPU cache size.

These results suggest that when running vLLM on CXL memory on the SPR-1, applying CPU binding to the local socket
can mitigate performance drops caused by remote CXL access. In contrast, for DIMM configurations, maximizing
CPU utilization without CPU binding can achieve better performance.

6.1.4 Weighted interleave

We study the vLLM performance on the SPR-1-ASIC-CXL-1 by enabling the weighted interleave through the numactl
option. The weighted interleave feature allows memory to be assigned, stored, and accessed across various NUMA
nodes in proportions specified by assigned weights. In contrast, traditional interleaving distributes memory access
evenly in a round-robin fashion across nodes. We have studied the interleaving bandwidth with microbenchmarks in
Section 3.4 and this section focus on vLLM inference when using weighted interleaving.

As shown in Figure 24, we find that using pure DRAM, especially when using DRAM DIMM from both sockets,
achieves higher tokens per second than using pure CXL memory, which aligns with our results in Section 3.4. In
addition, interleaving both DIMM and CXL achieves higher performance than using only the CXL, where the 4:4:1
config (four pages on local DIMM, four on remote DIMM, and one on local CXL) achieves nearly the peak DIMM
bandwidth. Since this system only has one memory expander, we expect the optimal configuration to change when
more expanders are added.

We also find that the weighted interleaving may not fully utilize the system’s aggregated bandwidth, where the added
CXL bandwidth should help achieve higher than pure DIMM bandwidth. This is potentially due to the machine learning
inference framework not specifically optimized to utilize the added CXL bandwidth, and also the interleaving scheme
does not consider the memory access pattern. While achieving sub-optimal performance, the weighted interleaving
is a drop-in solution, i.e., not requiring any software change, to expand the total memory capacity. We envision that
weighted interleaving could serve as an early exploration of software that uses CXL memory and later guide the
optimization strategies to fully utilize the total bandwidth.

6.1.5 Hybrid Memory Placement for GPU-based Inference

We conducted our experiments on the SPR-3-ASIC-CXL-1 using vLLM with LLaMA 3 70B model. We utilized the
same dataset as in previous experiments. The LLaMA 3 70B model has a total weight size of approximately 130
GiB, which exceeds the VRAM capacity of a single H100 GPU (80GiB), requiring weight offloading support. vLLM
provides CPU offloading functionality that allows storing portions of the model weights in CPU memory. During
inference, when calculations require weights from offloaded layers, vLLM temporarily copies these weights to reserved
GPU memory space, performs computations, and then frees the space–all computations still occur on the GPU.
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Table 5: Comparison of inference throughput with various offload configurations across H100 (DIMM/CXL) and
GH200

Offload Size Token per Second
H100 DIMM H100 CXL GH200

70 GiB 66.72 25.0 795.03
80 GiB 121.43 45.65 772.65
90 GiB 131.42 49.18 711.13

100 GiB 117.0 43.68 N/A

Table 6: CPU-to-GPU data transfer performance: Comparing DIMM and CXL memory using pinned CUDA memory

Transfer
Size

Duration (ms) Throughput (GiB/s)
DIMM CXL DIMM CXL

160 MiB 3.01 8.47 51.72 18.44
128 MiB 2.41 6.78 51.75 18.38
896 MiB 16.86 47.28 51.63 18.38
448 MiB 8.44 23.59 51.63 18.38

Average Throughput 51.68 18.39
Performance Ratio (DIMM/CXL): 2.81×

The KV cache size plays a critical role in LLM inference performance as it determines how many concurrent requests
can be processed. When using vLLM, the system allocates memory for model weights and KV cache based on available
GPU VRAM, typically reserving about 90% of total GPU memory for stability. For an H100 GPU with 80 GiB VRAM,
this results in approximately 72 GiB of usable memory. For example, when offloading 70 GiB of weights to CPU
memory, around 60 GiB of weights must remain in GPU VRAM (since the total model size is 130 GiB). This limits
the available memory for KV cache to about 10 GiB, restricting the number of inference requests that can be processed.
When deciding how much to offload, there is a tradeoff: offloading more weights provides more space for KV cache
but increases the frequency of memory transfers between CPU and GPU.

As shown in Table 5, the H100_DIMM case achieves approximately 2.7 times higher performance than the H100_CXL
case. With a significant portion of model weights stored in CPU memory, computations require frequent data transfers
to the GPU. The performance gap can thus be understood through the different data transfer capabilities of DIMM
and CXL memory systems. To better understand this relationship, we used NVIDIA Nsight Systems to capture GPU
traces, as detailed in Table 6. This analysis shows memory copy operations occurring between kernel executions during
inference. The data indicates memory copy from DIMM to GPU achieves an average throughput of 51.68 GiB/s, while
memory copy from CXL to GPU is limited to 18.39 GiB/s, a 2.81x difference. This bandwidth difference helps explain
the 2.7x inference throughput difference observed between the H100_DIMM and H100_CXL cases.

Our analysis indicates that during inference, memory copy operations consumed more than 99% of the total execution
time. We can conclude that memory bandwidth between CPU and GPU represents the primary bottleneck for LLM
inference when model weights are offloaded. The similar ratios between memory copy performance (2.81x) and infer-
ence throughput (2.7x) suggest a near-linear relationship between memory bandwidth and LLM inference performance
in weight-offloaded scenarios.

Our measurements show a performance pattern across all configurations where throughput reaches a maximum at a
specific offload size and then decreases. For the H100 configurations, optimal performance is reached at 90 GiB offload,
while the GH200 shows its best performance around 70 GiB. This pattern can be attributed to two competing factors.
When the offload size is too small (less than 70 GiB), there is insufficient memory allocated to the KV cache, limiting
the number of concurrent requests that can be processed and thus reducing throughput. Conversely, when the offload
size exceeds the optimal point (above 90 GiB for H100), the GPU spends more time waiting to fetch model weights
from CPU memory. In this scenario, while more space is available for the KV cache, its utilization decreases due to
frequent memory copy operations, consequently reducing throughput. These observations suggest that when designing
LLM inference systems, one should carefully plan model weight offloading strategies by considering the hardware’s
memory capacity and memory bandwidth.

To further investigate the impact of memory bandwidth limitations, we conducted the same experiments using the
NVIDIA GH200 Grace Hopper Superchip [16], which integrates Hopper GPU architecture with Grace CPU. This
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advanced superchip features 96GB of HBM3e memory and NVIDIA’s NVLink Chip-2-Chip interconnect, facilitating
high-speed communication between the CPU and GPU. The NVLink interconnect provides approximately 900 GB/s
of memory bandwidth (with 419 GB/s from CPU to GPU and 371 GB/s from GPU to CPU), which is about 8 times
faster than the PCIe Gen5 interface that delivers around 110 GB/s.

As shown in Table 5, this high memory bandwidth results in dramatically improved inference performance, with
the GH200 achieving nearly 16 times higher throughput than H100_CXL and 6 times higher than H100_DIMM at
comparable offload sizes. This substantial performance gain emphasizes the critical role of memory bandwidth in LLM
inference with offloaded weights.

6.2 Vector DB
Vector databases are built for managing and querying high-dimensional data, which is essential in applications involving
machine learning and AI. These systems store vector embeddings-mathematical representations of data such as text,
images, and audio generated by machine learning models. By leveraging vector similarity search, they enable efficient
retrieval of data which is important for tasks such as recommendation systems, image similarity searches, and natural
language processing. We use two vector databases, Qdrant [31] and Milvus [32], to evaluate the CXL performance
impact relative to DIMM performance. Our goal is to understand how CXL handles high-throughput, real-time similarity
search workloads and the impact on Requests Per Second (RPS), precision, and latency (p95 and p99) relative to
DIMM. We use glove100 [33] as the input for both vector databases, which includes pre-trained global vectors for word
representation (GloVe) for approximate neighbor search.

Figure 25 and Figure 26 shows the results from SPR-1-FPGA-CXL and SPR-1-ASIC-CXL-1 machines. For Qudrant,
DIMM achieved up to 3.5× higher RPS than CXL, with the Intel-CXL machine showing the smallest RPS difference
between DIMM and CXL. For the two other machines, we see a similar trend in the CXL performance. Regarding
latency, the p95 and p99 latencies are below 0.1ms for DIMM across all systems, while the CXL latencies in the
Intel-CXL machine show the best performance. On the other hand, the AMD-CXL and Intel-FPGACXL machines
show similar CXL latencies, with an up to 8× increase for both latencies.

For Milvus, across all these machines, we observe that DIMM and CXL have similar performance in terms of RPS,
with the CXL performance dropping faster as the precision increases. In addition, the Intel-CXL machine achieves the
smallest max RPS for both DIMM and CXL. Regarding latency, all systems display similar p95 and p99 latencies, with
the Intel-CXL machine having the lowest latency for DIMM, and Intel-FPGACXL displaying the lowest p99 latency
for CXL.

In conclusion, we notice that the performance of each vector database varies and depends heavily on the underlying
system, including the CPU and CXL architecture. For Qdrant, the Intel-CXL and AMD-CXL machines offer better
performance, while Milvus achieves the best performance for the Intel-FPGACXL machine.
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Figure 25: Requests per second (RPS) vs. precision with different memory devices.
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Figure 26: P95 latency vs. precision with different memory devices.
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Figure 27: P99 latency vs. precision with different memory devices.
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6.3 Graph and Key-Value Workloads
This section contains the performance of four graph (graph generation, pagerank, local clustering, BFS) and four KV
workloads (redis SET, redis GET, memcached SET, memcached GET). Table 7 contains the graph and KV workloads
that we used for our evaluation on Intel’s and AMD’s DRAM and CXL. We run these benchmarks on bare metal and a
virtual machine, while we also present the results for using base pages (4 KiB) and huge pages (2 MiB) on bare metal.
For all experiments we measure the execution time 5 times and report the normalized average execution time.

We use QEMU/KVM [34] version 4.2.1 to spawn and manage virtual machines (VMs) in our experimental setup.
For the graph workloads we use the graph-tool module in Python and for the KV workloads we are using the redis
(redis-py) and memcached (python-memcached) python clients [35, 36].

6.3.1 Bare Metal and Virtual Machine performance

Figures 28a, 29a and 30a show the performance for the 8 workloads that we run on bare metal and on a virtual machine,
plus the geomean of all workloads. The performance is normalized against the baseline, which is each server’s DIMM
bare metal performance. We have the following observations: First, the VM overhead over the bare metal execution
is proportional for both DIMM and CXL in most workloads, with the AMD-CXL machine having the lowest VM
performance degradation. Second, the graph workloads have a worse performance overhead with CXL than the KV
workloads. This is expected as the former are more memory intensive, with random memory accesses all over the
address space, with pagerank and local_clustering incurring the highest performance overhead. Third, the best CXL
performance is achieved by Intel-CXL with AMD-CXL and Intel-FPGACXL showing similar performance.

6.3.2 Bare Metal and Virtual Machine performance

Figures 28b, 29b and 30b presents the performance of 8 different workloads, along with the geometric mean, using
both base pages (4 KiB) and huge pages (2 MiB). The performance is normalized against the baseline, which is each
server’s DIMM bare metal with 4 KiB pages performance.

We have the following observations: First, we notice that the use of 2MiB pages has a different performance impact
in each machine. The Intel-CXL’s geomean shows a similar performance between the two different page sizes, while
the AMD-CXL’s geomean shows a 60% performance degradation when using CXL with huge pages. Last, the Intel-
FPGACXL’s geomean shows similar performance improvement in DIMM and DRAM with 2 MiB pages. Second, we
notice that again the worst performance degradation appears in graph workloads, due to their memory intensiveness.
Third, the CXL performance degradation with 2 MiB pages in some cases is bigger proportionally compared to the
DIMM’s 2 MiB overhead (e.g., pagerank in AMD-CXL).
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Table 7: Graph and KV workloads

Workload Description
graph_gen Graph generation with 50M vertices and 250M edges
pagerank Pagerank algorithm on the generated graph

bfs BFS algorithm on the generated graph
local_clustering Local clustering algorithm on the generated graph

redis_sets 50M SET operations on redis
redis_gets 50M GET operations on redis

memcached_sets 50M SET operations on memcached
memcached_gets 50M GET operations on memcached
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Figure 28: Normalized performance for graph and KV workloads on Intel-DIMM and Intel-CXL.
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Figure 29: Normalized performance for graph and KV workloads on AMD-DIMM and AMD-CXL.
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Figure 30: Normalized performance for graph and KV workloads on Intel-DIMM and Intel-FPGA CXL.
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7 Related Work
Several recent studies explored CXL-based systems’ characteristics, performance, and programmability.

Performance Characterization. Sun et al. [20] evaluate several real and emulated CXL devices. They show that
(a) real CXL devices can have better performance than NUMA-emulated CXL in some cases, (b) latency-sensitive
applications suffer from CXL’s higher access latency, and (c) propose a mechanism for dynamically tiering pages
between DRAM and CXL devices. Liu et al. [37] compare and contrast CXL-attached memory devices with traditional
DRAM-based NUMA node, explore use cases for CXL given its higher access latency compared to locally-attached
DRAM, and go beyond Sun et al. and show that several HPC workloads can tolerate CXL-attached memory’s high
latency and low throughput. They also observed limited performance improvements in GPU LLM workloads when
offloading tensors to CXL-attached memory. Tang et al. [38] evaluate the performance of CXL for cloud workloads
and develop a model to estimate CXL’s total cost of ownership (TCO). Previous works have also characterized other
memory devices that offer an interface similar to CXL-attached memory [39–41].

Memory Bandwidth and Capacity Expansion. Pond [42] proposes a multi-host memory pooling solution to
help with stranded memory in production cloud workloads. They show that a significant number of workloads show
negligible performance loss when their entire memory is allocated in the memory pool. Levis et al. [43], however,
argues against memory pooling for cloud workloads because of their cost, complexity, and utility. Yang et al. [44]
evaluate a new DRAM-SSD hybrid CXL-based memory pooling architecture and show promising results for HPC
workloads. Wahlgren et al. [45] developed a profiler for studying HPC workloads’ memory access pattern and study
capacity and bandwidth provisioning. Zhong et al. [46] developed a CXL memory allocator to intelligently allocate
and place VM pages in multi-tenant hosts, minimizing workload slowdown. Transparent page placement (TPP) [11] is
a mechanism to proactively place workload’s cold pages in the far memory to enable faster near-memory allocations
when new requests arrive. TPP can also dynamically and transparently move application pages between the near- and
far-memory based on their hotness. TPP is submitted to be upstreamed into Linux [47]. Berger et al. [48] explore the
design space of CXL-based memory pools and draw recommendations. They also study the cost savings from different
pool sizes and find small pools to be the most cost-effective.

Adapting applications for CXL. Previous works have also looked at the performance of a number of applications
on CXL. CC-NIC [49] implements a custom Host-NIC interface to take advantage of the CXL’s byte-addressability and
coherency, resulting in reduced latency and higher throughput compared to today’s PCIe NICs. Other works [50–52]
implement RPCs over CXL take advantage of the cache-coherent interface, improving performance. Many research
works have also looked into CXL-enabled persistence [53–57]. Cabrera et al. [58] propose the use of CXL in het-
erogeneous accelerator systems to enable easier and fine-grained collaboration as opposed to host-enabled memory
sharing.

Āpta [59] uses CXL-disaggregated memory to implement fault-tolerant object stores for function-as-a-service work-
loads outperforming RDMA-based solutions. Wei et al. [60] make a case for transaction index over CXL-based
distributed memory using a lightweight distributed memory transaction primitive (rTX). rTX achieves significant
performance improvement over other transactional indexes while minimizing the overhead of failure atomicity. Are-
lakis et al. [61] propose a CXL-attached memory expander that implements on-the-fly compression/decompression
for hyperscalar workloads. They propose this as an alternative to software-based memory compression, saving CPU
cycles.
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9 Conclusion
In this paper, we develop a memory benchmark suite, HEIMDALL, and leverage it to study a wide range of CXL-
attached systems’ performance. Our observations span across the system architecture stack, from basic hardware
behaviors, to micro-architecture and operating system performance, and applications including LLM inference and
vector databases. These observations shed light on the future development of heterogeneous memory architecture and
optimization in system software to better utilize such memory systems.
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