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Memory costs in datacenters

Memory accounts for 40-50% of modern data center costs

Persistent Memory  (PMEM) can help alleviate these costs
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Persistent Memory in storage stack
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• 2x higher latency

• 7x lower bandwidth

• 8x larger capacity

• Fraction of the cost
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Persistent Memory Operation Modes

PMEM Memory PMEM DAX

Memory and DAX at the same time



5

Persistent Memory Operation Modes

PMEM Memory PMEM DAX

Shift

Division through command line

Impractical!

Access to machine

Wasteful!
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Our idea: PMShifter

PMEM Memory PMEM DAX

Key Idea: Dynamic shifting to utilize unused PMEM DAX chunks
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PMShifter

Enables dynamic PMEM shifting

Proposes associated memory management fixes


• Accelerates compaction and migration

• Alleviates fragmentation

• Fixes PMEM issues in NUMA
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The rest of the talk

‣ Background & Motivation

‣ PMShifter

‣ Evaluation

‣ Conclusion
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Overview
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‣ PMShifter

‣ Evaluation

‣ Conclusion



10

Memory Hot(un)plug

• Increasing/decreasing size of available memory during runtime (e.g. 
faulty DIMMs, capacity on demand) on a region granularity (e.g. 2GB)


• PMShifter uses memory hot(un)plugging to shift between memory and 
DAX


• Memory regions are hot(un)plugged by onlining/offlining pages within
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Memory Hot(un)plug

Online page

Offline page
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Memory Hot(un)plug

Online page

Offline page
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Memory Hot(un)plug

Online page

Offline page

Onlining or offlining free page:

• Update page metadata
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Memory Hot(un)plug

Online page

Offline page

Offlining an allocated page:

• Allocate a new page

• Copy contents

• TLB entries invalidated

• Update page metadata

Goal: Minimize offlining allocated pages 
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Memory Compaction in Linux

• The process for tackling memory fragmentation, a key memory management issue

• A fragmented memory can increase allocation latency by ~3x

• Based on an iterative 3-step process
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Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

Migrate Scanner

Step 1: Gather allocated pages from start of 2MB block (start of address space)

…
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Memory Compaction in Linux

Free 4KB page

Allocated 4KB page
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Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

Migrate Scanner

…

Step 1: Gather allocated pages from start of 2MB block (start of address space)
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Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

Migrate Scanner

…

Free Scanner

Step 2: Scan for free pages from end of 2MB block (end of address space)
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Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

…

Step 3: Migrate Pages
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Memory Compaction in Linux

• 2MB block granularity

• Migrate scanner start from start of address space

• Free scanner starts from end of address space


• Pages in migrate and free lists are invisible


• Compaction threshold

• Next compaction run, scanners continue from last stop

• Position reset when scanners meet
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Memory Compaction Pathologies in Linux

1. Unmovable pages lead to wasted cycles 

Free 4KB page

Allocated 4KB page

Pinned allocated 4KB page
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Memory Compaction Pathologies in Linux
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Free 4KB page

Allocated 4KB page
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Memory Compaction Pathologies in Linux

1. Unmovable pages lead to wasted cycles 

This will revert all work

Free 4KB page

Allocated 4KB page

Pinned allocated 4KB page
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Memory Compaction Pathologies in Linux

Forces preemptive scanners meet and creates mixed space

2. Free scanner skips:

- ≥ 2MB blocks (2MB and 4MB blocks are the biggest blocks)

- Small blocks that cannot accommodate all pages from migration list  



27

Memory Compaction Pathologies in Linux

3. Unfair page skip

Page will be excluded from future compaction runs
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PMEM Page Migration

Crucial operation in hybrid memories

Process:

• Allocate a new page in the target memory

• Copy contents

• Free the old memory/TLB/metadata update

Main Linux allocator

• Centralized, 

performance 
critical component


• Free page is 
closer to start of 
address space, 
will be migrated 
again from the 
compactor
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Non-Uniform Memory Access (NUMA)

CPU 0

Memory 
Controller

DRAM

(Node 0)

PMEM

(Node 2)

CPU 1

Memory 
Controller

DRAM

(Node 1)

PMEM

(Node 3)

NUMA node 0 NUMA node 1
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Non-Uniform Memory Access (NUMA)

CPU 0

Memory 
Controller

DRAM

(Node 0)

PMEM

(Node 2)

CPU 1

Memory 
Controller

DRAM

(Node 1)

PMEM

(Node 3)

NUMA node 0 NUMA node 1
1. Accessing a local memory is 

faster than accessing a remote.

2. Accessing a remote DRAM is 

faster than accessing a remote 
PMEM.
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Non-Uniform Memory Access (NUMA)

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space
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Non-Uniform Memory Access (NUMA)

Node 0
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Node 2 Node 0 Node 3 Node 1

Node 3 Node 1 Node 2 Node 0
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Non-Uniform Memory Access (NUMA) ordering

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0 Node 3 Node 1

Node 3 Node 1 Node 2 Node 0

Efficient ordering 
for DRAM
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Non-Uniform Memory Access (NUMA)
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NUMA issue with PMEM

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)
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Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0 Node 3 Node 1

Node 3 Node 1 Node 2 Node 0

Remote PMEM 
over remote DRAM
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PMShifter compaction

Same 3-step logic with Linux for compatibility
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PMShifter compaction

Linux PMShifter

Block-to-block logic In bulk operation

2MB block 4MB block

Wasted cycles due to unmovable pages Skip unmovable pages in O(1)

Free scanner skips ≥ 2MB and small blocks Free scanner uses all blocks

Unfair page skip Page state not maintained

Same 3-step logic with Linux for compatibility
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PMShifter compactors

Different goals in DRAM and PMEM

• In DRAM maximize biggest free blocks

• In PMEM keep the start of the address space clean

The intuition behind this relates to shifting
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Combined DRAM compaction and PMEM migration

During compaction, fill half of the migrate list with the hottest pages from PMEM

• Increasing the total amount of migrated pages, increases throughput[1]

• Avoid pressure in Linux allocator

• Accurate page placement

[1] Yan et al. “Nimble Page Management for Tiered Memory Systems” ASPLOS 2019
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Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 1: DRAM pages from topN less loaded 4MB blocks 
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Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 1: DRAM pages from less topN 4MB blocks 



43

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 2: Hot pages from PMEM
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Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 2: Hot pages from PMEM
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Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 3: Scan for free pages
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Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 3: Scan for free pages
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Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 4: Migrate Pages
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Combined DRAM compaction and PMEM migration

Migrate List
… … …
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Persistent Memory Shifting

Goal: Accurately predict if we need to acquire/release memory

PMEM shifting is a costly operation that should occur infrequently

Use an adjusted version of the Exponential Moving Average



52

Persistent Memory Shifting

If 𝑀𝑃𝑡 > threshold, increase free memory by 5x

Memory pressure at time t

smoothing factor

total free space
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Persistent Memory Shifting

Which pages to shift, to reduce the cost?

Reminder: The PMEM compactor keeps the start of address space clean

Shift the start of address space 
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Proposed fix for NUMA
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Remote PMEM 
over remote DRAM
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Proposed fix for NUMA
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Remote DRAM 
over remote PMEM
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Evaluation

• Implemented PMShifter in Linux v5.6.19


• Evaluated with

– Microbenchmarks

– Redis

– Galois
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Compaction performance

PMShifter achieves up to 12.77× more 
2MB clean contiguous blocks.

Mixed space effect

4.5 minutes to 
start recovering 
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Combined DRAM compaction & PMEM migration

Failed migrations: 

- Less than 0.0083% for PMShifter

- Between 41.4% and 49.9% for Linux

Average speedup: 5.88×
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PMShifter elasticity
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PMShifter elasticity

PMShifter is elastic and proactive
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Conclusion

Is dynamic and elastic

Proposes associated memory management fixes

• Accelerates page migration

• Significantly improves fragmentation

• Fixes PMEM issues in NUMA


