
1

PMShifter: Enabling Persistent Memory
Fluidness in Linux

Theodore Michailidis, Steven Swanson, Jishen Zhao

UC San Diego

System and Architecture Lab on Scalability, Reliability and
Energy-Efficiency

Department of Computer Science & Engineering

University of California, San Diego

2

Memory costs in datacenters

Memory accounts for 40-50% of modern data center costs

Persistent Memory (PMEM) can help alleviate these costs

Storage

3

Persistent Memory in storage stack

PMEM

DRAM

Pe
rfo

rm
an

ce
Co

st
 p

er

G
B

Capacity

• 2x higher latency

• 7x lower bandwidth

• 8x larger capacity

• Fraction of the cost

4

Persistent Memory Operation Modes

PMEM Memory PMEM DAX

Memory and DAX at the same time

5

Persistent Memory Operation Modes

PMEM Memory PMEM DAX

Shift

Division through command line

Impractical!

Access to machine

Wasteful!

6

Our idea: PMShifter

PMEM Memory PMEM DAX

Key Idea: Dynamic shifting to utilize unused PMEM DAX chunks

7

PMShifter

Enables dynamic PMEM shifting

Proposes associated memory management fixes

• Accelerates compaction and migration

• Alleviates fragmentation

• Fixes PMEM issues in NUMA

8

The rest of the talk

‣ Background & Motivation

‣ PMShifter

‣ Evaluation

‣ Conclusion

9

Overview

‣ Background & Motivation

‣ PMShifter

‣ Evaluation

‣ Conclusion

10

Memory Hot(un)plug

• Increasing/decreasing size of available memory during runtime (e.g.
faulty DIMMs, capacity on demand) on a region granularity (e.g. 2GB)

• PMShifter uses memory hot(un)plugging to shift between memory and
DAX

• Memory regions are hot(un)plugged by onlining/offlining pages within

11

Memory Hot(un)plug

Online page

Offline page

12

Memory Hot(un)plug

Online page

Offline page

13

Memory Hot(un)plug

Online page

Offline page

Onlining or offlining free page:

• Update page metadata

14

Memory Hot(un)plug

Online page

Offline page

Offlining an allocated page:

• Allocate a new page

• Copy contents

• TLB entries invalidated

• Update page metadata

Goal: Minimize offlining allocated pages

15

Memory Compaction in Linux

• The process for tackling memory fragmentation, a key memory management issue

• A fragmented memory can increase allocation latency by ~3x

• Based on an iterative 3-step process

16

Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

Migrate Scanner

Step 1: Gather allocated pages from start of 2MB block (start of address space)

…

17

Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

Migrate Scanner

…

Step 1: Gather allocated pages from start of 2MB block (start of address space)

18

Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

Migrate Scanner

…

Step 1: Gather allocated pages from start of 2MB block (start of address space)

19

Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

Migrate Scanner

…

Free Scanner

Step 2: Scan for free pages from end of 2MB block (end of address space)

20

Memory Compaction in Linux

Free 4KB page

Allocated 4KB page

…

Step 3: Migrate Pages

21

Memory Compaction in Linux

• 2MB block granularity

• Migrate scanner start from start of address space

• Free scanner starts from end of address space

• Pages in migrate and free lists are invisible

• Compaction threshold

• Next compaction run, scanners continue from last stop

• Position reset when scanners meet

22

Memory Compaction Pathologies in Linux

1. Unmovable pages lead to wasted cycles

Free 4KB page

Allocated 4KB page

Pinned allocated 4KB page

23

Memory Compaction Pathologies in Linux

1. Unmovable pages lead to wasted cycles

Free 4KB page

Allocated 4KB page

Pinned allocated 4KB page

24

Memory Compaction Pathologies in Linux

1. Unmovable pages lead to wasted cycles

Free 4KB page

Allocated 4KB page

Pinned allocated 4KB page

25

Memory Compaction Pathologies in Linux

1. Unmovable pages lead to wasted cycles

This will revert all work

Free 4KB page

Allocated 4KB page

Pinned allocated 4KB page

26

Memory Compaction Pathologies in Linux

Forces preemptive scanners meet and creates mixed space

2. Free scanner skips:

- ≥ 2MB blocks (2MB and 4MB blocks are the biggest blocks)

- Small blocks that cannot accommodate all pages from migration list

27

Memory Compaction Pathologies in Linux

3. Unfair page skip

Page will be excluded from future compaction runs

28

PMEM Page Migration

Crucial operation in hybrid memories

Process:

• Allocate a new page in the target memory

• Copy contents

• Free the old memory/TLB/metadata update

Main Linux allocator

• Centralized,

performance
critical component

• Free page is
closer to start of
address space,
will be migrated
again from the
compactor

29

Non-Uniform Memory Access (NUMA)

CPU 0

Memory
Controller

DRAM

(Node 0)

PMEM

(Node 2)

CPU 1

Memory
Controller

DRAM

(Node 1)

PMEM

(Node 3)

NUMA node 0 NUMA node 1

30

Non-Uniform Memory Access (NUMA)

CPU 0

Memory
Controller

DRAM

(Node 0)

PMEM

(Node 2)

CPU 1

Memory
Controller

DRAM

(Node 1)

PMEM

(Node 3)

NUMA node 0 NUMA node 1
1. Accessing a local memory is

faster than accessing a remote.

2. Accessing a remote DRAM is

faster than accessing a remote
PMEM.

31

Non-Uniform Memory Access (NUMA)

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

32

Non-Uniform Memory Access (NUMA)

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0 Node 3 Node 1

Node 3 Node 1 Node 2 Node 0

33

Non-Uniform Memory Access (NUMA) ordering

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0 Node 3 Node 1

Node 3 Node 1 Node 2 Node 0

Efficient ordering 
for DRAM

34

Non-Uniform Memory Access (NUMA)

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0

Node 3 Node 1

Node 3 Node 1

Node 2 Node 0

35

NUMA issue with PMEM

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0 Node 3 Node 1

Node 3 Node 1 Node 2 Node 0

Remote PMEM 
over remote DRAM

36

Overview

‣ Background & Motivation

‣ PMShifter

‣ Evaluation

‣ Conclusion

37

PMShifter compaction

Same 3-step logic with Linux for compatibility

38

PMShifter compaction

Linux PMShifter

Block-to-block logic In bulk operation

2MB block 4MB block

Wasted cycles due to unmovable pages Skip unmovable pages in O(1)

Free scanner skips ≥ 2MB and small blocks Free scanner uses all blocks

Unfair page skip Page state not maintained

Same 3-step logic with Linux for compatibility

39

PMShifter compactors

Different goals in DRAM and PMEM

• In DRAM maximize biggest free blocks

• In PMEM keep the start of the address space clean

The intuition behind this relates to shifting

40

Combined DRAM compaction and PMEM migration

During compaction, fill half of the migrate list with the hottest pages from PMEM

• Increasing the total amount of migrated pages, increases throughput[1]

• Avoid pressure in Linux allocator

• Accurate page placement

[1] Yan et al. “Nimble Page Management for Tiered Memory Systems” ASPLOS 2019

41

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 1: DRAM pages from topN less loaded 4MB blocks

42

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 1: DRAM pages from less topN 4MB blocks

43

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 2: Hot pages from PMEM

44

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 2: Hot pages from PMEM

45

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 3: Scan for free pages

46

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 3: Scan for free pages

47

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 3: Scan for free pages

48

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 3: Scan for free pages

49

Combined DRAM compaction and PMEM migration

Migrate List
… … …

Step 4: Migrate Pages

50

Combined DRAM compaction and PMEM migration

Migrate List
… … …

51

Persistent Memory Shifting

Goal: Accurately predict if we need to acquire/release memory

PMEM shifting is a costly operation that should occur infrequently

Use an adjusted version of the Exponential Moving Average

52

Persistent Memory Shifting

If 𝑀𝑃𝑡 > threshold, increase free memory by 5x

Memory pressure at time t

smoothing factor

total free space

53

Persistent Memory Shifting

Which pages to shift, to reduce the cost?

Reminder: The PMEM compactor keeps the start of address space clean

Shift the start of address space

54

Proposed fix for NUMA

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0 Node 3 Node 1

Node 3 Node 1 Node 2 Node 0

Remote PMEM 
over remote DRAM

55

Proposed fix for NUMA

Node 0

DRAM

(Node 0)

PMEM

(Node 2)

DRAM

(Node 1)

PMEM

(Node 3)

Address Space

Node 2 Node 1 Node 3

Node 1 Node 3 Node 0 Node 2

Node 2 Node 0 Node 3Node 1

Node 3 Node 1 Node 2Node 0

Remote DRAM 
over remote PMEM

56

Overview

‣ Background & Motivation

‣ PMShifter

‣ Evaluation

‣ Conclusion

57

Evaluation

• Implemented PMShifter in Linux v5.6.19

• Evaluated with

– Microbenchmarks

– Redis

– Galois

58

Compaction performance

PMShifter achieves up to 12.77× more 
2MB clean contiguous blocks.

Mixed space effect

4.5 minutes to
start recovering

59

Combined DRAM compaction & PMEM migration

Failed migrations:

- Less than 0.0083% for PMShifter

- Between 41.4% and 49.9% for Linux

Average speedup: 5.88×

60

PMShifter elasticity

61

PMShifter elasticity

PMShifter is elastic and proactive

62

Overview

‣ Background & Motivation

‣ PMShifter

‣ Evaluation

‣ Conclusion

63

Conclusion

Is dynamic and elastic

Proposes associated memory management fixes

• Accelerates page migration

• Significantly improves fragmentation

• Fixes PMEM issues in NUMA

