
TOSS: Tiering of Serverless Snapshots for Memory-Efficient Serverless Computing

Theodore Michailidis∗, Juno Kim†, Linsong Guo∗, Steven Swanson∗, Jishen Zhao∗
∗University of California, San Diego

{tmichail, l1guo, sjswanson, jzhao}@ucsd.edu
†Oracle

{juno.k.kim}@oracle.com

Abstract—Serverless computing is an emerging cloud com-
puting paradigm where users offload functions to serverless
platforms that manage their own execution environments. Despite
recent advancements on efficient serverless management, we find
that cloud providers’ solutions lead to unnecessary memory
overheads, and significant memory cost by assuming a single
tier of memory (DRAM). In this paper, we evaluate previous
serverless works and offer insights about enabling memory
tiering for serverless. Based on our insights, we introduce Tiering
of Serverless Snapshots (TOSS), a heterogeneous memory mech-
anism that aims to reduce the total memory cost on serverless
platforms, while achieving comparable performance to single-tier
solutions. We show that TOSS achieves near optimal memory
cost for most functions, while offloading on average 92% of the
memory to the slow tier. In addition, TOSS achieves 52× lower
setup time and up to 4.2× lower invocation time than the state-
of-the-art DRAM-only mechanism.

Index Terms—memory systems, serverless, tiered memory

I. INTRODUCTION

Serverless computing [28], [34], [4], [10], [30], [9], [46] is
a cloud computing paradigm that allows developers to focus
on building and deploying applications on infrastructure that
is solely managed by cloud providers. Developers only pay for
the resources they use, while it is easier to scale applications,
as the infrastructure adjusts automatically to meet demands.
When a function invocation request is made, the system has
to setup the function’s environment. This means loading the
code, library and data that are needed, namely the startup time.

In the serverless world, most invocations are short-running.
A previous study [30] claimed that 50% of the functions run
for less than 0.67 s, while 75% for less than 10 s, while another
study [35] showed that the setup time takes between 160 ms
and 3.6 s. Consequently, the startup time dominates the total
invocation time for most functions, which is known as the
cold start problem. This is a burden for cloud providers, since
clients only pay for the invocation time and resources used
during the function execution.

A few techniques have been proposed to accelerate the
startup time, with checkpoint restoration using Virtual Ma-
chine (VM) snapshots [34], [4], [10] gaining a lot of popular-
ity. The use of VM snapshots minimizes the startup latency and
loads all required information and data to re-invoke functions.
This has gained a lot of attraction from industry too, with
Amazon recently introducing Lambda SnapStart [5].

We identify two key pathologies in previous snapshot-based
approaches: One is the assumption that memory access pat-

†Work done while at UCSD.

terns remain consistent across different invocations. Another
is that modern serverless systems utilize a single tier of ex-
pensive memory (DRAM), which drives up costs, as memory
contributes to 40% of total server expenses [1]. While memory
tiering could help with the last issue, existing approaches
are designed for long-running applications, contrary to short-
running and randomly invoked serverless functions.

In this paper, we offer a memory analysis for serverless
functions, identifying shortcomings from previous approaches.
Based on our observations, we introduce Tiering of Serverless
Snapshots (TOSS), the first memory tiering mechanism for
serverless functions. TOSS provides insights about different
functions’ memory patterns, aiming to reduce both the main
memory usage and the serverless memory cost. In this paper,
we make the following contributions:

• We identify shortcomings in previous snapshot-based
serverless works, and provide insights for enabling mem-
ory tiering for serverless.

• We introduce TOSS, the first serverless memory tiering
system that automatically minimizes memory cost.

• We present a simple memory cost formula that evaluates
the memory cost of any memory tiering configuration.

• We add snapshot tiering support on Firecracker, a widely-
used open-source Virtual Machine Monitor.

The remainder of the paper is organized as follows. Sec-
tion II contains the associated background of our work.
Section III includes our analysis of past approaches our
motivation. Section IV includes a high-level view of TOSS’
design, while Section V contains our implementation details.
Section VI includes the evaluation of our work, in Section VII
we describe the related work and Section VIII concludes our
paper.

II. BACKGROUND

Serverless computing offers a pay-as-you-go pricing model,
with cloud providers solely managing the infrastructure, opti-
mizing resource usage by automatically allocating resources
based on demand. This section focuses on the associated
background information.

A. Firecracker as Function Instance

Firecracker [1] is an open source micro-virtualization tech-
nology by AWS Lambda. It manages lightweight VMs (mi-
croVMs) that host function-based services with a focus on
running short-lived, stateless functions in a scalable, secure
and cost-effective manner.



(a) userfaultfd() (b) DAMON

Fig. 1: Visualized working set characterization from userfaultfd() and DAMON

Firecracker offers a snapshotting feature [5] to allow users
to create, save, and restore microVMs, as a solution to the
cold start problem. Snapshots are created using copy-on-write
on the root filesystem, while they capture both the VM’s
and virtual machine monitor’s states, including all emulated
hardware devices. To restore a snapshot, Firecracker initially
loads the VM state and memory maps the guest memory file,
while guest memory pages are loaded on-demand.

B. Memory Tiering

Memory tiering techniques [27], [2], [13], [22], [16]
leverage the heterogeneous characteristics of different memory
tiers. For two memory tiers, we expect to have a smaller,
expensive and fast tier (such as DRAM) and a denser, cheaper,
inexpensive and slow tier (such as CXL-attached [38] or
persistent memory [40]). The goal is to maintain the best
performance and expand the total memory capacity, while
minimizing the overhead. This is achieved by profiling the
memory and dynamically placing hot and cold pages to the
appropriate tier.

Traditional memory tiering techniques cannot be utilized for
serverless functions, since they are designed for long-running
applications. In contrast, serverless functions are short-lived,
with execution times ranging from milliseconds to a few
seconds [30], rendering memory profiling ineffectual. Addi-
tionally, serverless functions exhibit highly variable invocation
patterns, from completely random to fixed invocations. These
dynamic behaviors make it difficult for conventional tiering
systems to effectively capture and optimize memory usage for
serverless environments.

C. Memory Profiling

This section includes existing approaches on memory pro-
filing for snapshotting and memory tiering.
Snapshot-based Memory Profiling. REAP [34] and FaaS-
nap [4] are snapshot-based serverless approaches that use the
following profiling method: After the first function invocation,

they capture a VM snapshot and identify the function’s work-
ing set (WS), i.e. pages that have been accessed at least once
during the first invocation. REAP uses userfaultfd()
[20] and FaaSnap uses mincore() [19] for the working set
characterization. For subsequent invocations, the WS is loaded
on memory and the rest of the memory is loaded on demand
from the disk.
PEBS. Recent memory tiering systems utilized Intel’s Proces-
sor Event Based Sampling (PEBS) for memory profiling, an
extension to Intel’s processors original performance counters.
PEBS captures hardware events (e.g. LLC misses) along with
the associated memory addresses allowing for more sophis-
ticated decision-making about page placement on different
memory tiers.
DAMON. Another promising memory monitoring profiling
tool is Data Access MONitor (DAMON) [29], which is
designed to be accurate, light-weight and scalable. DAMON
reduces the overhead by using adaptive region-based sampling,
where memory is split between different-sized regions. Adja-
cent memory regions are periodically merged and split, based
on the similarity between their access frequency.

DAMON is already used on real-world systems from com-
panies like Amazon [17] and Alibaba [7]. In addition, Linux
has recently added support for DAMON-based reclamation
and huge page management [31]

D. Memory Pricing

Serverless computing platforms offer different memory pric-
ing tiers, which are measured in $/unit of storage/unit of time
(e.g. $/MB/ms). For instance, AWS Lambda charges the usage
per 1 millisecond, while Cloud Functions per 100 milliseconds
for fixed size memory configurations, i.e. 128 MB, 256 MB
etc. While these prices refer to single-tier systems, modern het-
erogeneous systems consist of different memory technologies
with varying costs per MB and attributes.

These vendors offer vCPU and memory bundles, which
necessitates that clients find the best bundle that covers both

2



the memory and CPU requirements for their functions. For
CPU-bound functions, clients choose bundles with signifi-
cantly more memory, to avoid the slowdown due to insufficient
CPU time. Consequently, clients have to choose higher cost
tiers that lower the execution time and increase the cost per
unit of time; choosing the best bundle can be cumbersome.

In addition, all this excess memory is a good use case
for memory tiering, where we can offload unused memory
to the slower tier and keep frequently used memory in the
fast tier. Automating the process of finding the best memory
configuration alleviates clients from profiling the function.

III. ANALYSIS & MOTIVATION

Despite recent progress on providing fast startup of VMs,
recent works have failed to identify and resolve serverless
functions’ memory idiosyncrasies. At the same time, previous
solutions work on a single tier of memory, which incurs high
memory costs and limits memory scalability. While memory
tiering is an active research area, it has not been explored in
serverless computing environments. In addition, the literature
is missing the means to evaluate such memory tiering solution
for serverless functions.

Industry publications [18], [1] claim that DRAM dominates
the total cost of servers, taking up to 40-50%. Our main mo-
tivation is to reduce the memory cost of serverless execution
by utilizing a slower, cheaper tier. The cost reduction derives
from replacing DRAM with a cheaper alternative (price per
GiB), while maintaining an acceptable performance loss.

Therefore, the motivation of this work is threefold: (i)
identify shortcomings in previous snapshot-based serverless
works, (ii) provide insights about memory tiering for server-
less, and (iii) propose a cost-efficient memory tiering approach
for serverless. Last, we also introduce a memory cost formula
that can be adopted by cloud vendors to evaluate tiered
memory configurations and enhance their current memory
pricing plans.

While we use for our analysis Intel® Optane™ Persis-
tent Memory as the slow tier, we design TOSS to use
with any memory technology as fast and slow tiers. For
instance, TOSS can be utilized by using DDR5 as the fast
tier and CXL-attached DDR4 as the slower, cheaper tier and
adapting the memory cost formula. Additionally, despite Op-
tane’s discontinuation, the persistent memory research space
remains relevant due to emerging alternatives like MRAM
and ReRAM. Recent works from industry and academia are
using these non-volatile memory technologies to accelerate
high-performance computing and AI workloads, while CXL-
attached persistent memory is explored for cloud and data
center environments [41], [43], [42], [24], [33], [32], [21].

A. Memory Tiering for Serverless

Existing memory tiering techniques are ill-suited for short-
running, arbitrarily invoked serverless applications. The con-
tiguous profiling and costly page migrations between tiers can
lead to suboptimal and unfair performance between serverless
functions, while unnecessarily increasing the system overhead.

Fig. 2: Normalized slowdown when offloading functions
fully on Intel® Optane™ Persistent Memory. We offload
each function for every input depicted in Table I, and show
normalized arithmetic mean over 10 iterations.

Instead, we propose to profile each function individually,
which leads to optimal memory tiering for each function and
significant profiling and system overhead reduction.

To enable memory tiering for serverless, we have to first
identify how a slower tier can affect the functions’ perfor-
mance. To this end, we deploy the functions in Table I with
their respective inputs to Intel® Optane™ Persistent Memory
and show the slowdown normalized to the DRAM case in
Figure 2.
Observations #1 & #2: First, some non-memory inten-
sive and short-running functions can run entirely in the slower
tier, with no or negligible performance degradation. Second,
some functions display a varying slowdown between different
inputs. This is due to the fact that the memory footprint varies
widely between different inputs for these functions. In this
case, some inputs still display negligible slowdown. Correctly
identifying these cases and offloading them to the slower tier
can lead to large memory cost savings.

B. Function Input Impact

Since REAP and FaaSnap capture a snapshot during the first
function execution, all subsequent executions will use the same
snapshot. However, divergent inputs lead to varying memory
access patterns and working set files. In order to test how
different inputs can affect the execution performance, we run
REAP with different inputs for the first execution (snapshot
input) and a subsequent invocation (execution input). We use
the functions in Table I for every combination of snapshot and
execution input, and show the mean and maximum invocation
time in Figure 3. The invocation time includes the time it
takes to setup the snapshot and execute the function. Each
bar represents the mean execution time between different
snapshot inputs, normalized to the case where the snapshot and

3



Fig. 3: Average and max slowdown of different snapshot
inputs with REAP for each execution input. Normalized
to using the same snapshot and execution input.

execution input is the same. The average execution slowdown
over all cases is 26% and up to 3.47×. During our study we
also found that invocations with the same input can lead to
slightly different memory access patterns and execution times.
We attribute this instability to the non-deterministic memory
allocation in the guest OS.
Observation #3: The snapshot input can heavily affect the
execution performance. Additionally, different executions with
the same input can lead to different memory access patterns.
To reduce functions’ execution overhead, we need a represen-
tative snapshot by capturing the memory access pattern over
multiple function invocations with divergent inputs.

C. Memory Access Profiling

We find two issues with previous approaches’ dual-accessed
memory profiling mechanism: (a) memory access patterns are
not stable across invocations, and (b) the classification scheme
is not nuanced enough. i.e. a single-accessed page is handled
the same as one that has thousands of accesses. In addition,
userfaultfd() and mincore() incur a high overhead,
which limits REAP and FaaSnap to use them only during the
initial function invocation. Additionally, mincore() inflates
the memory working set by taking into account prefetched
pages in the host page cache.

In another aspect, while PEBS is designed to be more
accurate with less overhead, it still suffers from significant
overheads [2], [3], including increased context switches, mem-
ory IO, and cache misses, and also leads to inconsistent
results [44]. Previous works have achieved low overhead with
PEBS only at a single-application granularity and by lowering
its profiling frequency, which renders it unsuitable for profiling
multiple short-running functions.

To avoid the aforementioned issues, we propose using
DAMON as a sweet spot for functions’ memory profiling in a
memory tiering serverless solution. DAMON provides a low-
cost and fine-grained memory access pattern view, while also
displays reduced overhead and better scalability.

Figure 1 visualizes how userfaultfd() and DAMON
capture a function’s memory access pattern for different inputs.

We notice that the pages’ access counts grow as we increase
the input, and each input leads to significantly different
memory access pattern. The former is the result of increased
memory allocation to the guest, which leads to increased
memory accesses.
Observation #4: Memory tiering for serverless requires
a more nuanced view of the memory access patterns. Thus,
dual-accessed memory information is inadequate to drive
fine-grained memory tiering decisions for serverless. Most
important, due to the high volume and nature of short-
running serverless functions, the profiling overhead and du-
ration should be minimized.

D. Pricing for Serverless

Since most functions either use intensively a small part of
memory or they are not memory-intensive, using expensive
DRAM entirely is wasteful.
Observation #5: Memory tiering for serverless can lead
to substantial memory savings, by identifying and offloading
underutilized memory to the slower tier.

These memory cost savings directly benefit both server-
less platforms and users. Platforms can offer a dynamically
calculated and reduced memory price per unit of time (and
number of requests), based on the function memory tiering
configuration at any given time. In the worst case scenario,
where the function is running entirely in DRAM, users pay
the same amount with the currently offered plans. On all
other cases, the platform benefits from a reduced memory cost
of ownership, while offering users to receive a dynamically
reduced plan.

IV. TOSS DESIGN

TOSS is the first tiered memory mechanism for serverless
functions that aims to reduce the total memory cost. It offers
both fast VM startups and fast function execution, while
maintaining a low-cost approach.

A. Overview

TOSS supports memory tiering of serverless functions in
four steps as depicted in Figure 4. First, TOSS executes a
function in a DRAM-only guest VM and takes a VM snapshot
after the execution finishes (Step I). TOSS uses this single-tier
snapshot to later create the tiered snapshot that will reside in
the slow and fast tiers. Second, TOSS enters the profiling phase
(Step II), gathering memory access information for subsequent
invocations. This is contrary to previous systems that assume a
single memory access pattern per function. TOSS collects this
information for multiple invocations to capture their divergent
memory access behavior.

The profiling phase is done solely on DRAM and depends
on the function’s execution time with profiling enabled. Since
75% of functions run for less than 10s [30] the profiling phase
usually ends within minutes. Profiling is not affected by the
request distribution and TOSS starts profiling after the first
invocation, regardless of future requests’ distribution.

After TOSS has gathered enough information to create a
representative tiered snapshot, it analyzes and processes the

4



Fig. 4: Overview of TOSS.

profiling information to decide how to partition the guest VM
memory between the 2 tiers (Step III). Finally, TOSS creates
the tiered snapshot that will utilize for future invocations (Step
IV). Since some functions may have substantially different
memory access patterns, we may have to re-profile and en-
hance our tiered snapshot.

This mechanism addresses the following challenges: First,
by capturing a divergent set of memory access patterns,
TOSS creates an improved representation of future memory
accesses for each function. This reduces or even eliminates
overhead from future invocations. Second, it automates the
process of choosing the page placement between the two tiers,
alleviating clients and vendors from choosing manually the
best configuration. Third, TOSS reduces the total memory
cost per invocation, as it detects the memory cost of different
memory regions, and places them accordingly to each tier.

B. Memory Cost Model
Our goal is to offer a solution to easily evaluate the memory

cost of a tiering decision, while enhancing cloud vendors’
current pricing structures with heterogeneous memory infor-
mation. Thus, we introduce a formula that calculates the tiered
memory cost, where any memory technology can be leveraged
for the two tiers. The formula that we use is the following:

SDown ∗ (MBFast ∗CostFast +MBSlow ∗CostSlow) (1)

where SDown is the slowdown relative to running the
function entirely in the fast tier, MB is the size in MB for
the fast and slow tiers, and Cost is the cost per MB for each
tier. This formula manages to detect how memory partitioning
and the relative slowdown affects the cost.

Since vendors use the $/unit of storage/unit of time (e.g.
$/MB/ms) as their pricing model, this formula enhances
it in the following ways: If we maintain the same slow-
down, but migrate memory from the fast to the slow tier,
we reduce the MBFast×CostFast portion, while increasing the
MBSlow×CostSlow portion. This reduces the $/MB part, thus
reducing the total memory cost. On the contrary, if we main-
tain the same memory partitioning and increase the slowdown,
this increases the number of milliseconds invocations take,
increasing proportionally the total memory cost.

V. TOSS IMPLEMENTATION

This section describes the distinct steps that TOSS takes to
create the tiered snapshot. We describe in detail the technical
challenges that drove our design decisions and how we attempt
to solve them.

A. Initial Execution

When TOSS receives the first function invocation, it runs the
function solely on DRAM and takes a single-tier snapshot after
the execution is complete. This single-tier snapshot is used
during the profiling phase, that is initiated from the second
invocation until TOSS creates the tiered snapshot.

B. Memory Profiling

The profiling phase lasts for multiple invocations, since
TOSS has to account for the variability between different
invocations with varying inputs. This phase should be kept
short to avoid the profiling overhead and also generate the
tiered snapshot promptly. In this phase TOSS uses DAMON
to gather the access pattern information for each invocation,
merging all access patterns in one unified access pattern file.
This aids in capturing the different memory access patterns
for both significantly different inputs and similar inputs with
different guest memory allocations. The unified access pattern
file determines whether we should terminate the profiling
phase. At the end of each invocation we check if the new
profiling information modifies the unified memory access
pattern or if it has converged to a stable set. If the access
pattern file does not change for N (100 in our prototype)
sequential invocations, then we terminate the profiling phase.

We chose DAMON’s sampling interval to be 10 µs, so
we can collect sufficient profiling data for very short-lived
functions. We observed that DAMON’s overhead does not
depend on the execution time, but mostly on rapid changes
in the access pattern. DAMON can easily scale for multiple
functions and a huge amount of memory due to its design. It
aggregates multiple pages into one region, which significantly
reduces the overhead since it only needs to profile a subset of
memory. We confirmed this minor performance overhead for
peak load in our server.

5



C. Profiling Analysis
In this phase, TOSS analyzes the information from the

unified access pattern file to decide how to split the data
between the two tiers. Ideally, we want to keep frequently
accessed data in the fast tier, and the rest in the slower tier.
However, since our goal is to minimize the memory cost per
invocation, we have to explore how different memory parts
affect the total memory cost. This stage takes from several
hundred milliseconds for a 128 MB snapshot and up to a
couple seconds for a 1 GB snapshot.

Initially, we move the zero-accessed pages to the slower tier.
Next, we use bin packing [37] to split equally the remaining
guest memory regions (different sized contiguous chunks of
memory) into bins, by using an open-source heuristic [6] for
the bin packing algorithm. Our intuition behind that is to clas-
sify memory and identify how each part of the memory affects
the performance and memory cost. One potential approach to
split memory regions equally is to split the guest VM memory
into equally-sized bins. However, this leads to disproportional
accesses between bins, since each memory region has different
access frequency.

Instead, in order to offer a better understanding regarding
the relationship between the overhead and offloaded memory
to the slower tier, we split the accesses into N (10 in our
prototype) mostly equally accessed bins. While the memory
accesses are split into equal bins, from the system’s perspective
not all accesses are equal, e.g. accessing serially regions
performs better than accessing memory randomly. This can
lead to slightly variable overheads between accessing different
bins. Also, by splitting memory into regions based on the total
bin access frequency, we end up with variable bin sizes.

After we split the memory regions to different bins, we have
to profile (bin profiling) the function for different fast/slow
ratios, by varying the number of bins that we offload to
the slower tier, i.e. we start with all bins in DRAM and
progressively offload more bins to the slower tier. For each
one of these configurations we measure the performance and
slowdown compared to the first case i.e. all bins in DRAM.

For the bin profiling we need a single representative input
that would present good intuition about the overhead and
slow tier ratio. We choose the biggest input that we have
encountered during the memory profiling phase (Step II)
for 3 reasons: First, it presents the highest variability and
intensity in terms of memory access pattern. Second, it most
likely covers the memory access patterns of invocations with
smaller inputs. For most functions in our study, we found that
the DAMON output from the biggest input execution covers
almost completely the patterns of smaller input invocations.

Third, as we see in Figure 2, the longest request (the largest
input) suffers the largest slowdown. The only exception are
functions that are short-running for every input (less than
10 ms) due to high variability in execution time.

For each one of the bins, we use the slowdown and slow tier
ratio to measure the bin’s memory cost based on our memory
cost formula (Equation 1). We get the memory cost normalized
to the case where the function runs fully in DRAM, meaning

that any bin that has a memory cost less than 1 will lower
the total memory cost. We place all such bins in the slow tier
to get the minimum memory cost. Since some functions can
be performance critical, TOSS receives as input a slowdown
threshold that bounds the slowdown, while optimizing the
memory cost. In such case, TOSS sorts the bins with a cost
less than 1 based on the slowdown and offload them to the
slower tier until the threshold is met.

D. Snapshot Tiering

After TOSS finishes with the analysis phase, it partitions
the single-tier memory snapshot file between the slow and fast
tiers. First, it creates two snapshot files, one for each tier. Then,
it copies serially all memory regions to the corresponding
memory file. At the same time, we create a memory layout
file that maintains the information about each memory region.
This information includes the tier, offset within the snapshot
file, offset within the guest VM memory and the size of the
memory region. When TOSS receives a function invocation,
it reads the memory layout file to load the tiered snapshot and
restore the guest VM memory by memory mapping each one
of the two tiered files.

E. Snapshot Re-Generation

After creating the tiered snapshot, TOSS has to ensure that
the generated snapshot maintains an optimal performance. An
example of a non-optimal snapshot generation can occur when
a function has mostly short-running requests but received a
long-running request during the profiling phase. Thus, TOSS
should adapt to changes in future invocations that generate
significantly different access patterns. For this purpose, we
associate each function with a re-profiling threshold. We
calculate this as follows: First, we calculate the Profiling
Overhead as the sum of the number of invocations running
with DAMON enabled and the total slowdown from running
the binned profiling part:

#invocationsDAMON +

10∑
bin=1

(1 + Slowdownbin) (2)

Second, we calculate a re-profiling Accelerating Factor:
for each invocation that has a greater execution time than the
Longest Running Invocation (LRI) during profiling, we cal-
culate the fraction of these two execution times multiplied by
the slowdown encountered during profiling when the function
was running entirely on the slow tier.

N∑
inv=1

Latencyinv
LatencyLRI

∗ (1 + SlowdownSlow) (3)

Last, we need to have a threshold that bounds the profiling
overhead for each function, i.e. if we want to bound the
profiling overhead to be 0.01% of the total invocations, then
this threshold has the value of 0.0001 and we re-profile when
the following equation is true:

#iterations∗0.0001 ≥ prof overhead−accel factor (4)

6



Name Description Memory Input Type Inputs

float operation Floating point ops for N numbers 128 MB N 10, 100, 1000, 10000
pyaes AES Text encryption 128 MB Text 64, 256, 1024, 4096 characters

json load dump Read-Modify-Write JSON files 128 MB JSON File 1, 10, 20, 40 JSON files
compress File compression 256 MB File 10 MB, 20 MB, 41 MB, 82 MB
linpack Solves Ax = b for matrix A 256 MB Dimension 100, 500, 1000, 2000
matmul Product of two 2D matrices 256 MB Dimension 100, 500, 1000, 2000

image processing Flips the input image 256 MB Image 43 kB, 315 kB, 1.8 MB, 4.1 MB
pagerank Pagerank on a graph 1024 MB Vertices 90,000, 180,000, 360,000, 720,000
lr serving Logistic regression inferencing 1024 MB Model &

Dataset Files
51 kB/10 MB, 83 kB/20 MB,

128 kB/41 MB, 192 kB/82 MB
lr training Logistic regression training 1024 MB Model &

Dataset Files
51 kB/10 MB, 83 kB/20 MB,

128 kB/41 MB, 192 kB/82 MB

TABLE I: Functions, memory configurations and inputs that we used in TOSS.

Fig. 5: Normalized cost and slowdown for all functions
(Input IV). Lower is better and optimal cost is 0.4.

F. Merging Adjacent Regions

Setup time in TOSS depends on the number of memory
regions that are split between the fast and slow tier, since
Firecracker uses one memory mapping per memory region.
Thus, by minimizing the number of memory mappings, we
reduce the overhead and accelerate the startup time. TOSS
accomplishes that by merging adjacent regions that have the
same attributes, which happens in two cases:
Access count Merging. After combining the access counts
from a function’s invocations, we merge adjacent regions that
have similar access count. We empirically found that merging
adjacent regions that vary by less than 100 accesses yields the
same results in terms of slowdown.
Bins Merging. After we pack memory regions into bins,
we merge adjacent regions that end up in the same tier.

VI. EVALUATION

In this section we evaluate TOSS and provide answers to
the following questions:

• How much can TOSS reduce the memory cost, compared
to the slowdown?

• What is the performance of TOSS, in terms of the startup
and function execution time?

• How much memory can TOSS offload to the slow tier?
• Is the longest running invocation representative for bin

packing profiling?

• How does placing different bins in the slow tier affect
the functions’ slowdown and cost?

• How does our bin placement perform for inputs that we
have not encountered during profiling?

• How well does TOSS scale for multiple concurrent func-
tion invocations?

A. Workloads and Methodology

For the evaluation we use a diverse mix of functions from
the FunctionBench benchmarking suite [15] and SeBS [8].
FunctionBench and SeBS include a very diverse set of func-
tions with varying memory intensiveness, needs and patterns
that cover a wide range of functions, including cpu-intensive,
memory-intensive and storage-intensive functions. For each
function we choose the guest VM memory size to be the
smallest multiple of 128 MB that executes without guest
VM performance issues memory issues. We used multiples
of 128 MB, as a common memory size scheme that is used
by Lambda, Cloud Functions and Azure.

We drop the host page cache between invocations, which
includes clearing all snapshot data that are cached, ensuring
the storage accesses for both host and guest. For DAMON,
we empirically choose 10 µs as the sampling interval and
16 kB for the minimum memory region size, displaying an
3% overhead on average. We use 100 DAMON files for each
input that we include in our snapshots.

We use 2 different snapshots; the first one is based on
input IV invocations only, while the other includes memory
traces using all inputs. The former is used to evaluate how
well TOSS works for smaller inputs/requests that have not
been encountered during the profiling phase. The snapshot
that includes all inputs represents a more realistic view of a
tiered snapshot in TOSS, where each function has encountered
divergent inputs during profiling.

Our evaluation excludes caching to provide an objective
basis for direct comparison with the SOTA. Caching is or-
thogonal to our approach, since TOSS can be leveraged in
conjunction with caching. Previously proposed techniques are
either caching most used functions [12] or predict the request
patterns to set up the function before the next invocation [30].
For the former, TOSS can keep the VM alive on both tiers until

7



Fig. 6: Slowdown to Memory Cost for each bin. Bins are sorted based on the memory cost efficiency.

evicted, while for the latter TOSS can load the VM before the
predicted function execution.

B. Evaluation Platform and SOTA

Our platform includes a 2×20-core Intel® Xeon® Gold
6230 CPU @ 2.10 GHz, with 96 GB of DDR4 DRAM (fast
tier), 768 GB of Intel® Optane™ Persistent Memory (slow
tier). We also use an Intel® Optane™ DC SSD with sequential
read and write of up to 2,500 MB/s and up to 2,200 MB/s,
respectively, and random read and write of up to 550,000
IOPS. We use the same 5.18 Linux kernel for both host
and guest and disable hyperthreading. Our implementation
includes approximately 2.8K LoC and we use 2.5 as the cost
ratio between the fast and slow tiers, according to public cost
data [23].

We compare TOSS with REAP, the snapshot-based state-
of-the-art serverless system. REAPtakes a snapshot during the
first function invocation and further optimizes snapshot load-
ing by prefetching the WS pages on memory and populating
the respective page table entries. This leads to reduced page
fault latency during the first accesses in the working set regions
of the guest memory.

C. Memory Cost

In this section we evaluate how memory cost is affected by
design decisions on TOSS, and we show its relationship with
slowdown and memory offloaded to the slow tier.

1) Minimum Memory Cost
Figure 5 contains the minimum memory cost over the

slowdown for all functions running with input IV. We use
the snapshot generated by all inputs and compare these costs
with the DRAM-only cost and the Optimal cost that can be
achieved. As we used 2.5 as the cost ratio between the fast and
slow tiers, the normalized optimal cost from our formula is 0.4,
considering the case where all memory resides in the slow tier
with no slowdown. TOSS displays a slowdown between 0%
and 25.6% (average: 6.7%), and a normalized memory cost
between 0.4 and 0.87 (average: 0.48). It is able to achieve a

near-optimal memory cost, while maintaining a slowdown of
less than 10% for 7 out of 10 functions. We note here that the
results are similar when using the Input IV-based snapshot.

The functions that suffer the biggest slowdown are im-
age processing and pagerank, displaying a slowdown of 17%
and 25%, respectively. This might not be acceptable for some
latency critical functions, so the client can choose to set a
slowdown threshold, which will minimize the slowdown and
increase the memory cost. In addition, pagerank is a very
memory intensive function, which limits how much memory
we can offload to the slow tier, limiting the memory cost
savings to 15%. In such cases, cloud providers can decide to
run these functions fully in DRAM, since the memory cost
savings might be insufficient to outweigh the performance
profiling overhead.

Other functions in our benchmarks are also memory in-
tensive, with matmul being one of the most intensive ones.
However, pagerank is the only function in our benchmarks
that displays such a low memory cost saving. We attribute
this to the fact that it displays the same intensity across most
of its working set, thus we can only offload a small part of its
working set to the slow tier. We use perf [39] to measure
the memory intensiveness by collecting the hardware counters
that measure the fraction of cycles stalled due to outstanding
Last-Level-Cache miss demand loads.

Memory Ratio Between Tiers. Table II shows the amount
of memory that TOSS offloads to the slower tier for the
minimum cost configuration. In average, TOSS offloads 92%
of the memory, with 5 functions being entirely offloaded.
For compress this was expected, since it displayed negligent
slowdown when we offloaded it fully in the slower tier (see
Figure 2). Last, since pagerank is a very memory intensive
function TOSS manages to offload only 49.1% of the memory,
which we still consider a sufficient main memory usage
reduction.

We have 2 important observations: First, TOSS correctly
identifies that most functions have a small hot subset, offload-

8



Function Slow Tier Percentage
lr serving 94.8%
lr training 100%

matmul 92%
image processing 100%

float operation 94%
json load dump 100%

pyaes 94.7%
linpack 95.9%

compress 100%
pagerank 49.1%

TABLE II: Memory offloaded to slow tier for the minimum
cost configuration in TOSS.

ing most memory to the slower tier, showcasing the importance
of memory tiering for serverless. Second, focusing entirely
on minimizing memory cost, and not the slowdown of the
function, can be more beneficial. This is the case for image
processing, which displays a huge slowdown, but is still fully
offloaded to the slower tier due to the maximum memory
reduction goal.

2) Incremental Memory Cost
Figure 6 visualizes the bin packing portion (Section V-C)

in TOSS for the 5 functions in Figure 2 that display the worst
slowdown. We show how incrementally moving bins to the
slow tier affects the slowdown and memory cost for all inputs.
Bins are sorted based on their individual memory cost and
offloaded to the slow tier one bin at a time, with the leftmost
point being the first bin and so forth.

We observe that as the input size increases, the accumulated
slowdown increases as well; this confirms our decision to
use the longest execution request for bin packing profiling.
There are some outliers here: First, we notice that for im-
age processing input III slight exceeds input IV in terms of
slowdown. This is not surprising, since the function displays
a higher latency variability. Nevertheless, memory cost and
slowdown are very similar between inputs II, III, IV. Second,
regarding lr serving, input III displays a slightly increased
slowdown (2%) compared to input IV for the initial bins; we
assume that this is within the acceptable variability limits.

Last, we observe that the memory cost is also proportional to
the input size, i.e. by using the largest invocation time request
we get a more conservative view of the memory cost. This is
beneficial for our approach, since our calculated memory costs
are the upper bound for each case, meaning that invocations
with smaller inputs can improve memory cost even further.

3) Snapshot-based Memory Cost
Achieving the minimum cost heavily depends on the tiered

snapshot representability. Below we are discussing our obser-
vations with using the two different snapshots, while we omit
the figure due to space limitations.
Input IV vs. All Inputs. We evaluate how our tiering
mechanism works for smaller inputs that were not encountered
during the profiling phase. We compare the minimum costs
between the two different snapshots, the one based on input
IV invocations and the other based on all inputs invocations.

Furthermore, we notice that for most functions/inputs the two
snapshots display a negligible difference, with the average cost
variance being 7.2%. This variance is increased in two cases:
for a few short-running invocations (less than 10 ms) and
pagerank, which is extremely memory intensive.

The former have a very short invocation time, leading
to very volatile results, even when they run completely on
DRAM. The latter has an average cost variance of 10% with
and a max cost variance of 21.5%, which also is the highest by
far for all invocations. We notice that this happens both due
to pagerank’s memory intensity and that it requires a more
diverse set of requests during the profiling phase. Excluding
the short-running invocations and pagerank, the average cost
variance drops to 2.4%.

All things considered, TOSS performs well for smaller in-
puts that have not been encountered during the profiling phase,
while for larger invocations we use the re-profiling mechanism.
Overestimating the memory cost provides an upper bound to
the memory cost that can be used as a guarantee for the
memory savings.
Input IV vs. Individual Input Placement. Next, we
evaluate how well the bin placement based on input IV works
for the rest of the inputs. We compare the bin placement that
minimizes input IV cost with the bin placement that minimizes
the cost for each individual input. The average difference is
6.1%, which shows that using just the maximum input for
the bin placement can achieve nearly optimal minimized cost.
Again, we see a few outliers that include the short-running
invocations; excluding those, the average cost variance drops
to 3.3%.

D. Invocation time

Our main goal is to reduce the memory cost, while main-
taining an acceptable slowdown. We evaluate the setup and
total invocation (setup & execution) time, and compare TOSS
with REAP. For TOSS we use the minimum cost tiered
snapshot, while for REAP we use all combinations of snapshot
and execution inputs and show the minimum, average and
maximum setup time.

Figure 7 compares the setup time between REAP and TOSS,
showing that TOSS has a significantly lower setup time in most
cases, with REAP displaying up to 52× higher setup time.
Because of the unified tiered snapshot in TOSS, the setup
time for each function is constant. On the contrary, REAP’s
setup time increases as the size of the snapshot increases.
REAP displays a faster setup time by a small margin only
when the working set is very small. Out of the 10 functions,
only pyaes and float_operation have a slightly lower
setup time when using REAP. REAP’s expensive setup time
is the result of having to load in-memory all pages that were
accessed during the invocation time. This inflates the setup
time, particularly for functions that have mostly a small work-
ing set, while facing a larger input during REAPs profiling
phase.

Figure 8 compares the normalized total invocation (setup
& execution) time between REAP and TOSS. Compared to

9



Fig. 7: Setup time for all combinations of execution and
snapshot inputs, normalized to DRAM snapshot setup
time.

Fig. 8: Total invocation time (setup & execution) for all
combinations of execution and snapshot inputs, normalized
to DRAM invocation time

Fig. 9: Execution time slowdown for concurrent invo-
cations, normalized to DRAM execution time. For im-
age processing, REAP Worst surpasses the y axis.

DRAM, TOSS displays 1.78× slowdown on average, and up
to 3.8×, while REAP a 2.5× slowdown on average, with up
to 13×. In addition, our data showed that image processing
displays a high slowdown not only for different snapshot
and execution input, but also when using input II for both,
displaying a 4× slowdown. This showcases the importance of
profiling multiple invocations, to capture the different memory
access patterns caused both by different inputs and memory
allocation patterns.

E. TOSS Scalability

Modern serverless platforms run multiple functions at a
time, so next we test the execution time scalability for con-
current invocations. We use up to 20 concurrent invocations,
which is the peak load that our server can achieve, since we
have 20 cores and we disable hyperthreading akin to [1],
Figure 9 contains the execution time slowdown for TOSS
and REAP, normalized to the DRAM case. We use execution
input 4, the largest input that causes the most slowdown, and
test the scalability for 1, 5, 10 and 20 concurrent invocations
of each function. For REAP we test two snapshot cases:
same snapshot and execution input (REAP Best), and input
1 for snapshot input (REAP Worst). The former has similar
results with DRAM, since during the profiling phase it marks
nearly all memory as the working set. The latter displays
significant slowdown for most functions as we increase the
number of concurrent invocations, with an average of 3.79×
and up to 19× slowdown for 20 concurrent invocations.
TOSS outperforms REAP Worst with different execution and
snapshot inputs in 8 out of 10 functions, with an average
slowdown of 1.95× and up to 4.2×.

For TOSS we notice that 5 out of 10 functions have similar
performance to DRAM, showing that our single-function pro-
filing is appropriate to drive platforms’ memory cost decisions.
Interestingly, pagerank, a memory intensive function, displays
similar scalability to the DRAM case. This is the result of
offloading only 49.1% to the slower tier, keeping the most
intensive memory to DRAM. For the remaining functions that
display a worse scalability, serverless providers can either use
a more conservative ratio between the fast and slow tiers
or modify the memory cost policy to reflect the increased
slowdown.

10



F. Limitations in TOSS

There are a few cases where TOSS can potentially lead
to reduced effectiveness or performance overhead. Extremely
memory intensive functions limit the offloaded memory to
the slow tier, thus limiting potential cost reductions while
introducing the profiling overhead. However, only pagerank
among functions that we tried exhibits such memory inten-
siveness (15% cost reduction in Figure 5). Another potential
issue might occur for functions with highly varying inputs that
will lead to multiple reprofiling cycles. In practice, we are not
aware of functions that display this input variability.

VII. RELATED WORK

This sections contains the related work regarding previous
cold start and memory tiering solutions.

A. Cold Start

Solutions for the cold start problem can be broadly classified
into two categories: caching and snapshotting. Two represen-
tative works on caching are proposed by Oakes et al. [26]
and Fuerst et al. [12]. Oakes et al. [26] introduced a concept
called Zygotes, which are pre-initialized processes containing
the necessary libraries required by applications. This allows
application processes to be forked from Zygotes, reducing the
library initialization cost. Fuerst et al. [12] extends caching
models to the serverless domain by demonstrating the equiva-
lence between caching and function keep-alive. Based on this,
they proposed a Greedy-Dual keep-alive policy to mitigate
cold start overhead.

Snapshot and restore is a novel approach to the cold start
problem. Du et al. [10] proposed to accelerate the restore
process by on-demand recovering application and system
state. Similarly, AWS Firecracker [1] employs the lazy restore
design. While these approaches help reduce cold start over-
head, they can result in extra page faults during the function
execution.

B. Memory Tiering

In recent years, the emergence of non-DRAM memory
technologies, including NVMe SSDs and NVMs, have opened
up new opportunities for tiered memory systems. These tech-
nologies are cheaper than DRAM and offer the potential
to reduce expenses for modern datacenters. For example, a
study conducted by Weiner et al. [36] at Meta revealed that
even though the cost of DRAM can account for 33% of the
server’s total cost, a significant portion of memory is not
frequently accessed. This insight has led to the development of
a mechanism where cold memory can be offloaded to slower
tiers, such as SSDs, or compressed in DRAM, reducing the
total server cost.

Apart from SSDs, non-volatile memories also has the poten-
tial to act as the slow tier in memory tiered systems. Duraisamy
at el. [11] built a tiered memory system that consists of
DRAM and a variant of Intel Optane Persistent Memory. By
dynamically managing the page placement, they managed to
reduce the total cost by up to 25% with an up to 5% slowdown.

While there is no limitation to the slower memory’s per-
formance characteristics, TOSS would benefit the most from
having a comparable performance between the fast and slow
memories. Since the existing memory technologies (SSDs,
DRAM, CXL-attached DRAM, PMEM, GPU memory etc.)
have comparable performance, we expect that TOSS can be
utilized for any of these combinations.

TOSS can support accelerator memory, provided that it can
be exposed by the system. For instance, TOSS can be used
with DRAM as the slow, capacity tier and a GPU’s memory
as the fast, small tier. A similar GPU unified memory idea
is utilized by NVIDIA [25] and past papers [45], [14], where
DRAM and flash memory act as a capacity extension of the
GPU’s memory.

VIII. CONCLUSION

We present TOSS, the first memory tiering mechanism
for serverless snapshots that aims to reduce the memory
cost per invocation. TOSS enables efficient memory tiering
through enhanced memory access characterization, leading to
better accuracy across different function invocations. We also
propose a simple memory formula that evaluates the tiered
memory cost, maintaining compatibility with cloud vendors
such as AWS Lambda, Google Cloud and Azure. Based on this
formula we show how TOSS achieves near optimal memory
cost by offloading most memory to the slower tier. Last, we
show how memory cost reduction is decoupled from slowdown
optimization.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-
back. This paper is supported in part by the PRISM center
within JUMP 2.0, an SRC program sponsored by DARPA

REFERENCES

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), pages 419–434, Santa Clara, CA, February 2020. USENIX
Association.

[2] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main memory. In Proceed-
ings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’17, page 631–644, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[3] Soramichi Akiyama and Takahiro Hirofuchi. Quantitative evaluation of
intel pebs overhead for online system-noise analysis. In Proceedings
of the 7th International Workshop on Runtime and Operating Systems
for Supercomputers ROSS 2017, ROSS ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[4] Lixiang Ao, George Porter, and Geoffrey M. Voelker. Faasnap: Faas
made fast using snapshot-based vms. In Proceedings of the Sev-
enteenth European Conference on Computer Systems, EuroSys ’22,
page 730–746, New York, NY, USA, 2022. Association for Computing
Machinery.

[5] AWS. Improving startup performance with Lambda SnapStart, Online;
Accessed October, 2024. https://docs.aws.amazon.com/lambda/latest/dg/
snapstart.html.

[6] bfmaier. binpacking 1.5.2, Online; Accessed October, 2024. https://
pypi.org/project/binpacking/.

11

https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://pypi.org/project/binpacking/
https://pypi.org/project/binpacking/


[7] Alibaba Cloud. DATOP, Online; Accessed October, 2024. https://github.
com/aliyun/data-profile-tools.

[8] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. Sebs: A serverless benchmark suite for
function-as-a-service computing. In Proceedings of the 22nd Interna-
tional Middleware Conference, Middleware ’21, page 64–78, New York,
NY, USA, 2021. Association for Computing Machinery.

[9] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Xanadu:
Mitigating cascading cold starts in serverless function chain deploy-
ments. In Proceedings of the 21st International Middleware Conference,
Middleware ’20, page 356–370, New York, NY, USA, 2020. Association
for Computing Machinery.

[10] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computing with initialization-less booting. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’20,
page 467–481, New York, NY, USA, 2020. Association for Computing
Machinery.

[11] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela
Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg
Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ranganathan, and
Amin Vahdat. Towards an adaptable systems architecture for memory
tiering at warehouse-scale. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2023, page 727–741, New
York, NY, USA, 2023. Association for Computing Machinery.

[12] Alexander Fuerst and Prateek Sharma. Faascache: Keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2021, page 386–400,
New York, NY, USA, 2021. Association for Computing Machinery.

[13] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan.
Heteroos: Os design for heterogeneous memory management in data-
center. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, page 521–534, New York, NY, USA,
2017. Association for Computing Machinery.

[14] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Hadidi, and
Hyesoon Kim. Batch-aware unified memory management in gpus for
irregular workloads. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 1357–1370, New York, NY,
USA, 2020. Association for Computing Machinery.

[15] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for
serverless faas. In Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC ’19, page 477, New York, NY, USA, 2019. Association
for Computing Machinery.

[16] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. Exploring the
design space of page management for Multi-Tiered memory systems. In
2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
715–728. USENIX Association, July 2021.

[17] Amazon Web Services Labs. DAMO, Online; Accessed October, 2024.
https://github.com/awslabs/damo.

[18] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
Pond: Cxl-based memory pooling systems for cloud platforms. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 2023, page 574–587, New York, NY, USA, 2023. Association
for Computing Machinery.

[19] Linux kernel community. mincore(2) — Linux manual page, Online; Ac-
cessed October, 2024. https://man7.org/linux/man-pages/man2/mincore.
2.html.

[20] Linux kernel community. userfaultfd(2) — Linux manual page, On-
line; Accessed October, 2024. https://man7.org/linux/man-pages/man2/
userfaultfd.2.html.

[21] Mahesh Natu and Thomas Won Ha Choi,. Compute Express
Link™(CXL™): Supporting Persistent Memory, Online; Accessed Octo-
ber, 2024. https://computeexpresslink.org/wp-content/uploads/2023/12/
CXL-2.0-Presentation-Persistent-Memory-20210615 FINAL.pdf.

[22] Theodore Michailidis, Steven Swanson, and Jishen Zhao. PMShifter:
Enabling Persistent Memory Fluidness in Linux. In Proceedings of the

13th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’22, page
1–8, New York, NY, USA, 2022. Association for Computing Machinery.

[23] Timothy Prickett Morgan. The Era Of Big Memory Is Upon Us, Online;
Accessed October, 2024. https://www.nextplatform.com/2020/09/23/the-
era-of-big-memory-is-upon-us.

[24] Fabiha Nowshin and Yang Yi. ReRAM-Based Neuromorphic Computing,
pages 43–65. Springer International Publishing, Cham, 2023.

[25] Nvidia. CUDA UNIFIED MEMORY, Online; Accessed Octo-
ber, 2024. https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06
Managed Memory.pdf.

[26] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Sock: Rapid
task provisioning with serverless-optimized containers. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Confer-
ence, USENIX ATC ’18, page 57–69, USA, 2018. USENIX Association.

[27] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. Hemem: Scalable tiered memory management for big data
applications and real nvm. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21, page 392–407,
New York, NY, USA, 2021. Association for Computing Machinery.

[28] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. What serverless computing is and
should become: The next phase of cloud computing. Commun. ACM,
64(5):76–84, apr 2021.

[29] SeongJae Park. DAMON: Data Access Monitor, Online; Accessed
October, 2024. https://sjp38.github.io/post/damon/.

[30] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider. In
2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
205–218. USENIX Association, July 2020.

[31] The kernel development community. DAMON-based Reclamation,
Online; Accessed October, 2024. https://docs.kernel.org/admin-guide/
mm/damon/reclaim.html.

[32] TSMC and ITRI. ITRI and TSMC’s High-Speed Breakthrough: SOT-
MRAM, Online; Accessed October, 2024. https://itritoday.itri.org/116/
content/en/unit 03-1.html.

[33] TSMC and ITRI. TSMC’s Next-Gen Memory Breakthrough: Seizing
Opportunities in AI and High-Performance Computing, Online;
Accessed October, 2024. https://www.trendforce.com/news/2024/01/18/
news-tsmcs-next-gen-memory-breakthrough-seizing-opportunities-in-
ai-and-high-performance-computing/.

[34] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, Analysis, and Optimization of Serverless
Function Snapshots, page 559–572. Association for Computing Ma-
chinery, New York, NY, USA, 2021.

[35] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms.
In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’18, page 133–145, USA, 2018.
USENIX Association.

[36] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Octoberank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. Tmo: Transparent memory
offloading in datacenters. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, page 609–621, New York, NY, USA,
2022. Association for Computing Machinery.

[37] Wikipedia contributors. Bin packing problem — Wikipedia, the free
encyclopedia, Online; Accessed October, 2024. https://en.wikipedia.org/
w/index.php?title=Bin packing problem&oldid=1154327033.

[38] Wikipedia contributors. Compute express link — Wikipedia, the free
encyclopedia, Online; Accessed October, 2024. https://en.wikipedia.org/
w/index.php?title=Compute Express Link&oldid=1241521209.

[39] Wikipedia contributors. Perf (linux) — Wikipedia, the free encyclopedia,
Online; Accessed October, 2024. https://en.wikipedia.org/w/index.php?
title=Perf (Linux)&oldid=1126307013.

[40] Wikipedia contributors. Persistent memory — Wikipedia, the free
encyclopedia, Online; Accessed October, 2024. https://en.wikipedia.org/
w/index.php?title=Persistent memory&oldid=1144357434.

[41] Yuanchao Xu, Chencheng Ye, Yan Solihin, and Xipeng Shen. Ffccd:
fence-free crash-consistent concurrent defragmentation for persistent

12

https://github.com/aliyun/data-profile-tools
https://github.com/aliyun/data-profile-tools
https://github.com/awslabs/damo
https://man7.org/linux/man-pages/man2/mincore.2.html
https://man7.org/linux/man-pages/man2/mincore.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL-2.0-Presentation-Persistent-Memory-20210615_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL-2.0-Presentation-Persistent-Memory-20210615_FINAL.pdf
https://www.nextplatform.com/2020/09/23/the-era-of-big-memory-is-upon-us
https://www.nextplatform.com/2020/09/23/the-era-of-big-memory-is-upon-us
https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf
https://sjp38.github.io/post/damon/
https://docs.kernel.org/admin-guide/mm/damon/reclaim.html
https://docs.kernel.org/admin-guide/mm/damon/reclaim.html
https://itritoday.itri.org/116/content/en/unit_03-1.html
https://itritoday.itri.org/116/content/en/unit_03-1.html
https://www.trendforce.com/news/2024/01/18/news-tsmcs-next-gen-memory-breakthrough-seizing-opportunities-in-ai-and-high-performance-computing/
https://www.trendforce.com/news/2024/01/18/news-tsmcs-next-gen-memory-breakthrough-seizing-opportunities-in-ai-and-high-performance-computing/
https://www.trendforce.com/news/2024/01/18/news-tsmcs-next-gen-memory-breakthrough-seizing-opportunities-in-ai-and-high-performance-computing/
https://en.wikipedia.org/w/index.php?title=Bin_packing_problem&oldid=1154327033
https://en.wikipedia.org/w/index.php?title=Bin_packing_problem&oldid=1154327033
https://en.wikipedia.org/w/index.php?title=Compute_Express_Link&oldid=1241521209
https://en.wikipedia.org/w/index.php?title=Compute_Express_Link&oldid=1241521209
https://en.wikipedia.org/w/index.php?title=Perf_(Linux)&oldid=1126307013
https://en.wikipedia.org/w/index.php?title=Perf_(Linux)&oldid=1126307013
https://en.wikipedia.org/w/index.php?title=Persistent_memory&oldid=1144357434
https://en.wikipedia.org/w/index.php?title=Persistent_memory&oldid=1144357434


memory. In Proceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, page 274–288, New York, NY,
USA, 2022. Association for Computing Machinery.

[42] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao,
Hai Jin, and Yan Solihin. Reconciling selective logging and hardware
persistent memory transaction. In 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 664–676,
2023.

[43] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao,
Hai Jin, and Yan Solihin. Specpmt: Speculative logging for resolving
crash consistency overhead of persistent memory. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS
2023, page 762–777, New York, NY, USA, 2023. Association for
Computing Machinery.

[44] Jifei Yi, Benchao Dong, Mingkai Dong, and Haibo Chen. On the
precision of precise event based sampling. In Proceedings of the
11th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’20,
page 98–105, New York, NY, USA, 2020. Association for Computing
Machinery.

[45] Haoyang Zhang, Yirui Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang.
G10: Enabling an efficient unified gpu memory and storage architecture
with smart tensor migrations. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’23,
page 395–410, New York, NY, USA, 2023. Association for Computing
Machinery.

[46] Pawel Zuk and Krzysztof Rzadca. Scheduling methods to reduce re-
sponse latency of function as a service. In 2020 IEEE 32nd International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 132–140, 2020.

13


	Introduction
	Background
	Firecracker as Function Instance
	Memory Tiering
	Memory Profiling
	Memory Pricing

	Analysis & Motivation
	Memory Tiering for Serverless
	Function Input Impact
	Memory Access Profiling
	Pricing for Serverless

	TOSS Design
	Overview
	Memory Cost Model

	TOSS Implementation
	Initial Execution
	Memory Profiling
	Profiling Analysis
	Snapshot Tiering
	Snapshot Re-Generation
	Merging Adjacent Regions

	Evaluation
	Workloads and Methodology
	Evaluation Platform and SOTA
	Memory Cost
	Minimum Memory Cost
	Incremental Memory Cost
	Snapshot-based Memory Cost

	Invocation time
	TOSS Scalability
	Limitations in TOSS

	Related Work
	Cold Start
	Memory Tiering

	Conclusion
	References

